Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria

Wyszukiwanie zadań

Punkty A ,B,C ,D leżą na okręgu o środku O (zobacz rysunek). Miara zaznaczonego kąta α jest równa


PIC


A) 54,5∘ B) 31∘ C) 34 ∘ D) 27∘

Ukryj Podobne zadania

Punkty A ,B,C ,D leżą na okręgu o środku O (zobacz rysunek). Miara zaznaczonego kąta α jest równa


PIC


A) 54,5∘ B) 30∘ C) 34 ∘ D) 27∘

Punkty A ,B ,C i D leżą na okręgu o środku S . Miary kątów SBC , BCD , CDA są równe odpowiednio: |∡SBC | = 60∘ , |∡BCD | = 110∘ , |∡CDA | = 90∘ (zobacz rysunek).


PIC


Wynika stąd, że miara α kąta DAS jest równa
A) 25∘ B) 3 0∘ C) 35∘ D) 40∘

Ukryj Podobne zadania

Punkty A ,B ,C i D leżą na okręgu o środku S . Miary kątów SBC , BCD , CDA są równe odpowiednio: |∡SBC | = 50∘ , |∡BCD | = 105∘ , |∡CDA | = 90∘ (zobacz rysunek).


ZINFO-FIGURE


Wynika stąd, że miara α kąta DAS jest równa
A) 25∘ B) 3 0∘ C) 35∘ D) 40∘

Punkty A ,B ,C i D leżą na okręgu o środku S . Miary kątów SBC , BCD , SAD są równe odpowiednio: |∡SBC | = 50∘ , |∡BCD | = 1 10∘ , |∡SAD | = 40∘ (zobacz rysunek).


PIC


Wynika stąd, że miara α kąta ADC jest równa
A) 120 ∘ B) 110∘ C) 10 0∘ D) 11 5∘

Wskaż równanie okręgu opisanego na trójkącie ABC o wierzchołkach A = (27 ,2 2) , B = (25,20) , C = (25 ,2 2)
A) x2 − 52x + y2 − 4 4y+ 1159 = 0 B) x 2 − 52x + y2 − 42y+ 1115 = 0
C)  2 2 x − 50x + y − 42y + 1065 = 0 D)  2 2 x − 50x + y − 44y+ 1065 = 0

Przekątna graniastosłupa prawidłowego czworokątnego, w którym wysokość jest 2 razy dłuższa od krawędzi podstawy, jest równa 6. Wynika stąd, że objętość tego graniastosłupa jest równa
A) 24√ 6- B) 36√ 2- C)  √ -- 6 3 D)  √ -- 12 6

Trójkąt prostokątny ma boki długości  √ -- 6,12,6 3 i kąty ostre α,β . Kąt β leży naprzeciw boku długości  √ -- 6 3 . Zatem
A) α = β B) α = 2 β C) β − α = 45∘ D) β = 2α

Ukryj Podobne zadania

Trójkąt prostokątny ma boki długości  √ -- 5,10,5 3 i kąty ostre α,β . Kąt β leży naprzeciw boku długości  √ -- 5 3 . Zatem
A) α = β B) α = 3 β C) β − α = 30∘ D) β = 3α

Trójkąt prostokątny ma boki długości  √ -- 6,12,6 3 i kąty ostre α,β . Kąt β leży naprzeciw boku długości 6. Zatem
A) α = β B) α = 2 β C) β − α = 45∘ D) β = 2α

Okrąg o średnicy 6 jest styczny do osi Oy , a oś Ox jest jego osią symetrii. Środek tego okręgu ma współrzędne
A) (0,3) B) (6,0 ) C) (3,0) D) (0,6)

Punkty A ,B,C ,D dzielą okrąg na 4 równe łuki. Miara zaznaczonego na rysunku kąta wpisanego ACD jest równa


PIC


A) 9 0∘ B) 60∘ C) 45 ∘ D) 30∘

Punkt O jest środkiem okręgu. Kąt środkowy AOD ma miarę


PIC


A) 150 ∘ B) 120∘ C) 11 5∘ D) 85 ∘

Ukryj Podobne zadania

Punkt O jest środkiem okręgu. Kąt środkowy AOD ma miarę


PIC


A) 130 ∘ B) 120∘ C) 11 5∘ D) 85 ∘

Punkty ABCD leżą na okręgu o środku S (zobacz rysunek). Miara kąta DBC jest równa


PIC


A) 59∘ B) 3 4∘ C) 28∘ D) 32∘

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 70∘ B) 110∘ C) 14 0∘ D) 21 0∘

Ukryj Podobne zadania

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 160 ∘ B) 80∘ C) 10 0∘ D) 70 ∘

Miara kąta α (patrz rysunek obok) jest równa


PIC


A) 45∘ B) 5 0∘ C) 55∘ D) 60∘

Środek S okręgu opisanego na trójkącie ABC należy do boku BC . Suma miar kątów ABC i BCA trójkąta ABC jest równa
A) 30∘ B) 9 0∘ C) 60∘ D) 45∘

Ukryj Podobne zadania

Środek S okręgu opisanego na trójkącie ABC należy do boku BC . Miara kąta BAC trójkąta ABC jest równa
A) 30∘ B) 9 0∘ C) 60∘ D) 45∘

Punkty A = (5,− 3) , B = (− 3,5) , C = (− 7,1) i D = (1 ,− 7 ) są wierzchołkami prostokąta ABCD . Pole tego prostokąta jest równe
A) 16 B) 32 C) 64 D) 96

Przekrój osiowy stożka jest trójkątem równoramiennym o ramieniu długości 12. Kąt rozwarcia stożka ma miarę 120∘ . Objętość stożka wynosi
A) 72π B)  √ -- 72 3 π C) 21 6π D)  √ -- 216 3π

Na podstawie AB i ramieniu AC trójkąta równoramiennego ABC dane są punkty D i E takie, że |AE | = 2|EC | i |AD | = 2|DB | . Punkty F i G leżą na ramieniu BC tak, że odcinki DG i EF są prostopadłe do prostej BC (zobacz rysunek).


PIC


Pole trójkąta ABC jest równe 18. Zatem suma pól trójkątów CF E i BGD jest równa
A) 9 B) 6 C) 3 D) 2

Ukryj Podobne zadania

Punkty D i E są środkami odpowiednio podstawy AB i ramienia AC trójkąta równoramiennego ABC . Punkty F i G leżą na ramieniu BC tak, że odcinki DG i EF są prostopadłe do prostej BC (zobacz rysunek).


PIC


Pole trójkąta BGD jest równe 2, a pole trójkąta CF E jest równe 4. Zatem pole trójkąta ABC jest równe
A) 24 B) 8 C) 12 D) 16

Punkty A = (− 2,4) i B = (6,− 2) są końcami podstawy trójkąta równoramiennego ABC . Prosta zawierająca wysokość CD tego trójkąta przecina prostą AB w punkcie
A) (2,1) B) (3 ,− 2 ) C) (− 3,2) D) (2,− 2)

Ukryj Podobne zadania

Punkty A = (8,− 1) i B = (− 4,5) są końcami podstawy trójkąta równoramiennego ABC . Prosta zawierająca wysokość CD tego trójkąta przecina prostą AB w punkcie
A) (6,− 3) B) (2,2 ) C) (− 1,− 2) D) (− 3,6)

Punkt K = (− 3,1) jest wierzchołkiem trójkąta równoramiennego KLM , w którym |KM | = |LM | . Odcinek MN jest wysokością trójkąta i N = (− 1,− 5) . Zatem
A) L = (1,− 11) B) L = (−2 ,−2 ) C) L = (− 5,− 9) D) L = (− 4,− 4)

Punkt K = (2,2) jest wierzchołkiem trójkąta równoramiennego KLM , w którym |KM | = |LM | . Odcinek MN jest wysokością trójkąta i N = (4,3 ) . Zatem
A) L = (5,3) B) L = (6,4) C) L = (3,5) D) L = (4,6)

Kąt α w trójkącie prostokątnym przedstawionym na rysunku spełnia warunek sin α = 513 . Bok CA tego trójkąta ma długość:


PIC


A) 10 B) 24 C) 12 D) 5

Ukryj Podobne zadania

Dany jest trójkąt prostokątny o bokach długości a,b,c .


PIC


Jeżeli sin α = 0 ,28 oraz a = 7 , to
A)  √ --- b = 74 B) b = 2 5 C) b = 24 D)  √ ---- b = 7 74

Kąt α w trójkącie prostokątnym przedstawionym na rysunku spełnia warunek sin α = 817 . Bok CA tego trójkąta ma długość:


ZINFO-FIGURE


A) 30 B) 8 C) 16 D) 24

Jeśli  1 sin α = 4 , to długość przyprostokątnej b danego trójkąta (patrz rysunek) jest równa


PIC


A) √ --- 17 B) √ ---- 135 C) √ ---- 14 0 D) √ ---- 15 3

Jeśli  1 sin α = 4 , to długość przyprostokątnej a danego trójkąta (patrz rysunek) jest równa


PIC


A)  √ --- 4 15 B)  √ --- 5 15 C)  √ --- 6 1 5 D)  √ --- 7 1 5

Miara kąta między bokiem AB równoległoboku ABCD , a przekątną AC jest równa 30 ∘ . Długość przekątnej AC jest równa 5, a długość boku AB wynosi 4, zatem pole równoległoboku jest równe
A) P = 12 B) P = 10√ 3- C) P = 20 D) P = 10

Obwód trójkąta ABC wynosi 28 cm, a jego pole jest równe  2 8 4 cm . Promień okręgu wpisanego w trójkąt ABC jest równy
A) 3 cm B) 6 cm C) 4 cm D) 7 cm

Punkt  ′ S = (3,7) jest obrazem punktu S = (3a− 1,b+ 7) w symetrii osiowej względem osi Ox układu współrzędnych, gdy
A) a = 43 oraz b = 0 B) a = 43 oraz b = −1 4
C)  2 a = − 3 oraz b = − 14 D)  2 a = − 3 oraz b = 0

Trójkąt, w którym stosunek długości boków jest równy 2 : 3 : 4 , jest
A) równoboczny B) prostokątny C) ostrokątny D) rozwartokątny

Ukryj Podobne zadania

Trójkąt, w którym stosunek długości boków jest równy 4 : 4 : 5 , jest
A) równoboczny B) prostokątny C) ostrokątny D) rozwartokątny

Powierzchnia sześcianu wynosi  2 150 cm . Krawędź tego sześcianu ma długość
A) 4 cm B) 5 cm C) 5,5 cm D) 6 cm

Ukryj Podobne zadania

Powierzchnia sześcianu wynosi  2 96 cm . Krawędź tego sześcianu ma długość
A) 4 cm B) 5 cm C) 5,5 cm D) 6 cm

Pole powierzchni całkowitej sześcianu jest równe  2 150 cm . Długość krawędzi tego sześcianu jest równa
A) 3,5 cm B) 4 cm C) 4,5 cm D) 5 cm

Powierzchnia sześcianu wynosi  2 216 cm . Krawędź tego sześcianu ma długość
A) 3 cm B) √ -- 6 cm C) 12 cm D) 6 cm

Strona 60 z 62
spinner