Środek okręgu o równaniu ma współrzędne
A) B) C) D)
/Szkoła średnia/Zadania testowe/Geometria
Środkiem okręgu o równaniu jest punkt
A) B) C) D)
Środek okręgu o równaniu ma współrzędne
A) B) C) D)
Środek okręgu o równaniu ma współrzędne
A) B) C) D)
Środek okręgu o równaniu ma współrzędne
A) B) C) D)
Środek okręgu o równaniu ma współrzędne
A) B) C) D)
Środek okręgu o równaniu ma współrzędne
A) B) C) D)
Punkt jest symetryczny do punktu względem osi układu współrzędnych, a punkt jest symetryczny do punktu względem osi . Zatem trójkąt jest
A) równoboczny
B) prostokątny i równoramienny
C) prostokątny i żaden z jego kątów nie jest równy
D) prostokątny z kątem ostrym równym
W kwadracie o boku długości 20 połączono punkty i na bokach i w ten sposób, że odcinek jest równoległy do przekątnej i jest od niej 5 razy krótszy.
Długość odcinka jest równa
A) 12 B) 15 C) 14 D) 16
W trójkącie prostokątnym przeciwprostokątna ma długość 4. Pole koła opisanego na tym trójkącie wynosi
A) B) C) D)
Pole koła opisanego na trójkącie prostokątnym o bokach długości 10, 24, 26 jest równe
A) B) C) D)
Wzór funkcji liniowej, której wykresem jest prosta nachylona do osi pod kątem o mierze i przechodzi przez punkt jest postaci
A) B)
C) D)
Wykres funkcji liniowej jest nachylony do osi pod kątem . Wiadomo, że . Funkcja liniowa jest określona wzorem
A) B)
C) D)
Objętość sześcianu jest równa . Jaka jest suma długości wszystkich krawędzi tego sześcianu?
A) 18 cm B) 36 cm C) 24 cm D) 12 cm
Objętość sześcianu jest równa . Jaka jest suma długości wszystkich krawędzi tego sześcianu?
A) 48 cm B) 36 cm C) 24 cm D) 64 cm
Na rysunku przedstawiono okrąg wpisany w trójkąt.
Miara kąta jest równa
A) B) C) D)
Okrąg o środku w punkcie jest wpisany w trójkąt . Wiadomo, że i (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Okrąg o środku w punkcie jest wpisany w trójkąt . Wiadomo, że i (zobacz rysunek).
Miara kąta jest równa
A) B) C) D)
Odległość między środkami okręgów o równaniach oraz jest równa
A) B) C) D)
Proste o równaniach oraz
A) są równoległe i różne B) są prostopadłe
C) przecinają się pod kątem innym niż prosty D) pokrywają się
Równania oraz opisują proste w układzie współrzędnych, które
A) przecianją się pod kątem prostym
B) pokrywają się
C) są równoległe i nie pokrywają się
D) przecinają się pod innym kątem niż
Na płaszczyźnie, w kartezjańskim układzie współrzędnych , dane są:
– prosta o równaniu
– prosta o równaniu .
Proste i
A) pokrywają się. B) nie mają punktów wspólnych.
C) są prostopadłe. D) przecinają się pod kątem .
Na płaszczyźnie, w kartezjańskim układzie współrzędnych , dane są:
– prosta o równaniu
– prosta o równaniu .
Proste i
A) pokrywają się. B) nie mają punktów wspólnych.
C) są prostopadłe. D) przecinają się pod kątem .
Proste o równaniach oraz
A) są równoległe i różne B) są prostopadłe
C) przecinają się pod kątem innym niż prosty D) pokrywają się
Proste o równaniach oraz
A) pokrywają się B) przecinają się pod kątem innym niż prosty
C) są prostopadłe D) są równoległe i różne
Równania oraz opisują dwie proste
A) przecinające się pod kątem o mierze .
B) pokrywające się
C) przecinające się pod kątem różnym od .
D) równoległe i różne.
Równania oraz opisują proste w układzie współrzędnych, które
A) przecianją się pod kątem prostym
B) pokrywają się
C) są równoległe i nie pokrywają się
D) przecinają się pod innym kątem niż
Na płaszczyźnie, w kartezjańskim układzie współrzędnych , dane są proste oraz o równaniach
Proste oraz
A) nie mają punktów wspólnych. B) są prostopadłe.
C) przecinają się w punkcie . D) pokrywają się.
Równania oraz opisują proste w układzie współrzędnych, które
A) przecianją się pod kątem prostym
B) pokrywają się
C) są równoległe i nie pokrywają się
D) przecinają się pod innym kątem niż
Na płaszczyźnie, w kartezjańskim układzie współrzędnych , dane są proste oraz o równaniach
Proste oraz
A) nie mają punktów wspólnych. B) są prostopadłe.
C) przecinają się w punkcie . D) pokrywają się.
Równania oraz opisują dwie proste
A) przecinające się pod kątem o mierze .
B) pokrywające się.
C) przecinające się pod kątem różnym od .
D) równoległe i różne.
W trójkącie prostokątnym miary kątów ostrych są równe i . Wartość wyrażenia jest równa
A) B) C) D)
Punkty i to środki boków, odpowiednio i kwadratu . Przekątna tego kwadratu ma długość
A) B) 10 C) D) 20
Punkty i to środki boków, odpowiednio i kwadratu . Przekątna tego kwadratu ma długość
A) 32 B) C) D) 16
Każde z ramion trójkąta równoramiennego ma długość 20. Kąt zawarty między ramionami tego trójkąta ma miarę . Pole tego trójkąta jest równe
A) 100 B) 200 C) D)
Każde z ramion trójkąta równoramiennego ma długość 20. Kąt zawarty między ramionami tego trójkąta ma miarę . Pole tego trójkąta jest równe
A) 100 B) 200 C) D)
Pole powierzchni trójkąta równoramiennego o ramionach długości 6 cm i kącie między nimi jest równe
A) B) C) D)
Ramię trójkąta równoramiennego ma długość 8, a jeden z kątów tego trójkąta ma miarę . Pole tego trójkąta jest równe
A) B) C) 32 D)
Wierzchołki trójkąta mają współrzędne i . Bok trójkąta ma długość
A) B) C) D)
Wysokość rombu o boku długości 6 i kącie ostrym jest równa
A) B) 3 C) D) 6
Wysokość rombu o boku długości 8 i kącie ostrym jest równa
A) B) 4 C) D) 8
Dany jest sześciokąt foremny o polu równym (zobacz rysunek).
Pole trójkąta jest równe
A) 6 B) C) D) 4
Dane są graniastosłup i ostrosłup o takich samych podstawach. Liczba wszystkich wierzchołków tego graniastosłupa jest o 9 większa od liczby wszystkich wierzchołków tego ostrosłupa. Podstawą każdej z tych brył jest
A) dziewięciokąt. B) ośmiokąt. C) osiemnastokąt. D) dziesięciokąt.
Dane są graniastosłup i ostrosłup o takich samych podstawach. Liczba wszystkich wierzchołków tego graniastosłupa jest o 10 większa od liczby wszystkich wierzchołków tego ostrosłupa. Podstawą każdej z tych brył jest
A) dziewięciokąt. B) ośmiokąt. C) jedenastokąt. D) dziesięciokąt.
Na trójkącie opisano okrąg i poprowadzono styczną do okręgu w punkcie (zobacz rysunek obok).
Jeżeli i kąt dopisany jest równy , to kąt ma miarę:
A) B) C) D)
Czworokąt jest wpisany w okrąg o środku . Bok jest średnicą tego okręgu, a miara kąta jest równa (zobacz rysunek).
Wtedy miara kąta jest równa
A) B) C) D)
Czworokąt jest wpisany w okrąg o środku . Bok jest średnicą tego okręgu, a miara kąta jest równa (zobacz rysunek).
Wtedy miara kąta jest równa
A) B) C) D)
Suma kwadratów długości wszystkich boków trójkąta prostokątnego jest równa . Zatem promień okręgu opisanego na tym trójkącie ma długość:
A) 10 cm B) 7,5 cm C) 5 cm D) 2,5 cm
Suma kwadratów długości wszystkich boków trójkąta prostokątnego jest równa . Zatem promień okręgu opisanego na tym trójkącie ma długość:
A) 10 cm B) 7,5 cm C) 5 cm D) 2,5 cm
Suma kwadratów długości wszystkich boków trójkąta prostokątnego jest równa . Zatem promień okręgu opisanego na tym trójkącie ma długość:
A) 10 cm B) 7,5 cm C) 5 cm D) 2,5 cm
W trójkącie , w którym , na boku wybrano punkt taki, że oraz (zobacz rysunek).
Wynika stąd, że kąt ma miarę
A) B) C) D)
Dany jest trójkąt równoramienny , w którym . Na podstawie tego trójkąta leży punkt , taki że , oraz (zobacz rysunek).
Wynika stąd, że kąt ma miarę
A) B) C) D)
Dany jest trójkąt równoramienny , w którym . Na podstawie tego trójkąta leży punkt , taki że , oraz (zobacz rysunek).
Wynika stąd, że kąt ma miarę
A) B) C) D)
W trójkącie , w którym , na boku wybrano punkt taki, że oraz (zobacz rysunek).
Wynika stąd, że kąt ma miarę
A) B) C) D)