Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań
Ukryj Podobne zadania

Z punktu A leżącego na okręgu o promieniu r = 6 cm i środku O poprowadzono dwie równej długości cięciwy AB i AC tworzące kąt 30∘ . Oblicz pole czworokąta ABOC .

Kąt α w trójkącie prostokątnym przedstawionym na rysunku spełnia warunek sin α = 513 . Bok CA tego trójkąta ma długość:


PIC


A) 10 B) 24 C) 12 D) 5

Ukryj Podobne zadania

Dany jest trójkąt prostokątny o bokach długości a,b,c .


PIC


Jeżeli sin α = 0 ,28 oraz a = 7 , to
A)  √ --- b = 74 B) b = 2 5 C) b = 24 D)  √ ---- b = 7 74

Kąt α w trójkącie prostokątnym przedstawionym na rysunku spełnia warunek sin α = 817 . Bok CA tego trójkąta ma długość:


ZINFO-FIGURE


A) 30 B) 8 C) 16 D) 24

Jeśli  1 sin α = 4 , to długość przyprostokątnej b danego trójkąta (patrz rysunek) jest równa


PIC


A) √ --- 17 B) √ ---- 135 C) √ ---- 14 0 D) √ ---- 15 3

Jeśli  1 sin α = 4 , to długość przyprostokątnej a danego trójkąta (patrz rysunek) jest równa


PIC


A)  √ --- 4 15 B)  √ --- 5 15 C)  √ --- 6 1 5 D)  √ --- 7 1 5

Objętość graniastosłupa prawidłowego czworokątnego jest równa  3 224 cm , a promień okręgu opisanego na podstawie ma długość 4 cm. Wyznacz miarę kąta między przekątnymi sąsiednich ścian bocznych wychodzącymi z tego samego wierzchołka graniastosłupa. Wynik podaj z dokładnością do  ∘ 1 .

Wierzchołek C trójkąta ABC leży na prostej y = 3x + 4 , a pozostałe wierzchołki mają współrzędne A = (− 1,− 4) i B = (2,5 ) . Uzasadnij, że pole trójkąta ABC nie zależy od wyboru punktu C i oblicz to pole.

Miara kąta między bokiem AB równoległoboku ABCD , a przekątną AC jest równa 30 ∘ . Długość przekątnej AC jest równa 5, a długość boku AB wynosi 4, zatem pole równoległoboku jest równe
A) P = 12 B) P = 10√ 3- C) P = 20 D) P = 10

Rzucamy 5 razy symetryczną monetą. Oblicz prawdopodobieństwo otrzymania co najmniej 4 orłów lub co najmniej 4 reszek, jeżeli wiadomo, że otrzymaliśmy co najmniej jedną reszkę.

Dane są dwie bryły: stożek, w którym długość promienia podstawy jest równa 2 dm i wysokość ma długość 2π- dm oraz ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość 4 dm. Wiedząc, że objętości tych brył są równe, wyznacz kąt nachylenia ściany bocznej ostrosłupa do jego podstawy.

Na płaszczyźnie dany jest nieskończony ciąg (Tn) , dla n ≥ 1 , równoramiennych trójkątów prostokątnych. Pole trójkąta Tn +2 jest dwa razy mniejsze od pola trójkąta Tn dla n ≥ 1 . Uzasadnij, że suma pól trójkątów T 1 i T 2 jest równa sumie pól wszystkich pozostałych trójkątów.

Ukryj Podobne zadania

Na płaszczyźnie dany jest nieskończony ciąg (Tn) , dla n ≥ 1 , trójkątów równobocznych. Pole trójkąta Tn+2 jest dwa razy mniejsze od pola trójkąta Tn dla n ≥ 1 . Uzasadnij, że suma pól trójkątów T1 i T 2 jest równa sumie pól wszystkich pozostałych trójkątów.

Wiadomo, że kąt α jest kątem ostrym i cos α = x . Wtedy  2 tg α równa się
A) -12 − 1 x B) 12-+ 1 x C)  2 1 − x D) -x2- 1−x2

Ukryj Podobne zadania

Wiadomo, że kąt α jest kątem ostrym i cos α = a . Wtedy --1- tg2α równa się
A) -1 − 1 a2 B) --a2- 1−a 2 C) 1 − a2 D) 1a2 + 1

Wiadomo, że kąt α jest kątem ostrym i sinα = k . Wtedy  2 tg α równa się
A) 1 − k2 B) -12 + 1 k C) -1 k2 − 1 D) -k2- 1−k2

Wyznacz te wartości parametru m , dla których nierówność (m 2 + 5m − 6)x2 − 2(m − 1 )x+ 3 > 0 jest prawdziwa dla każdego x ∈ R .

Wyrażenie  2 2 (1− x)(1− x )(x + 1) jest równe
A) x5 − x4 − x + 1 B) 1− x 5 − x 4 − x C) 1 − x − x2 + x3 D) x 4 + x − x 5 − 1

Obwód trójkąta ABC wynosi 28 cm, a jego pole jest równe  2 8 4 cm . Promień okręgu wpisanego w trójkąt ABC jest równy
A) 3 cm B) 6 cm C) 4 cm D) 7 cm

Podaj te wartości a , przy których dla każdego b istnieje takie c , że układ równań:

{ bx− y = ac2 (b− 6 )x+ 2by = c + 1

ma zawsze przynajmniej jedno rozwiązanie.

Punkt  ′ S = (3,7) jest obrazem punktu S = (3a− 1,b+ 7) w symetrii osiowej względem osi Ox układu współrzędnych, gdy
A) a = 43 oraz b = 0 B) a = 43 oraz b = −1 4
C)  2 a = − 3 oraz b = − 14 D)  2 a = − 3 oraz b = 0

Funkcja kwadratowa f jest określona wzorem f (x) = a(x − 1)(x − 3) . Na rysunku przedstawiono fragment paraboli będącej wykresem tej funkcji. Wierzchołkiem tej paraboli jest punkt W = (2,1) .


PIC


Współczynnik a we wzorze funkcji f jest równy
A) 1 B) 2 C) − 2 D) − 1

Ukryj Podobne zadania

Funkcja kwadratowa f jest określona wzorem f (x) = a(x + 3)(x − 5) . Na rysunku przedstawiono fragment paraboli będącej wykresem tej funkcji. Wierzchołkiem tej paraboli jest punkt W = (1,8) .


PIC


Współczynnik a we wzorze funkcji f jest równy
A) − 1 2 B) 2 C) − 2 D) 1 2

Strona 449 z 461
spinner