Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Rozwiąż równanie, w którym lewa strona jest sumą zbieżnego szeregu geometrycznego.

 ( ) n + n-+ n-+ -n-+ ⋅⋅⋅ = n . 3 9 27 2

Przekrój osiowy stożka jest trójkątem równoramiennym o ramieniu długości 12. Kąt rozwarcia stożka ma miarę 120∘ . Objętość stożka wynosi
A) 72π B)  √ -- 72 3 π C) 21 6π D)  √ -- 216 3π

Liczby x− 1,x,5 są długościami boków trójkąta równoramiennego. Oblicz x .

Ukryj Podobne zadania

Wyznacz wszystkie liczby rzeczywiste x , spełniające równanie sin 5x − sin x = 0 .

Ukryj Podobne zadania

Dwa okręgi o środkach S 1 i S2 przecinają się w punktach A i B , przy czym punkty S 1 i S 2 leżą po przeciwnych stronach prostej AB . Miary kątów AS 1B i AS 2B wynoszą odpowiednio 90∘ i 60∘ . Wyznacz długości promieni tych okręgów wiedząc, że |S S | = a 1 2 .

Kule o jednakowych promieniach ułożono w rzędach tworząc w ten sposób kwadrat. Gdyby usunięto 669 kul, to z pozostałych można by było zbudować trójkąt równoboczny (w pierwszym rzędzie jedna kula, w drugim dwie, w trzecim trzy itd.) Bok trójkąta równobocznego zawierałby wówczas o 8 kul więcej niż bok kwadratu. Z ilu kul zbudowany był kwadrat?

W układzie współrzędnych na płaszczyźnie punkty A = (2,5) i C = (6,7) są przeciwległymi wierzchołkami kwadratu ABCD . Wyznacz równanie prostej BD .

Ukryj Podobne zadania

W układzie współrzędnych na płaszczyźnie punkty A = (5,4) i C = (3,8) są przeciwległymi wierzchołkami kwadratu ABCD . Wyznacz równanie prostej BD .

W kwadracie ABCD punkty A = (− 8,− 2) oraz C = (0,4) są końcami przekątnej. Wyznacz równanie prostej zawierającej przekątną BD tego kwadratu.

Do wykresu funkcji nie należy punkt A = (− 2,− 3) . Funkcja f może mieć wzór
A) f(x ) = 2x + 1 B) f (x) = − 3x − 9 C) f(x ) = − 2x − 6 D) f (x) = 3x + 3

Na podstawie AB i ramieniu AC trójkąta równoramiennego ABC dane są punkty D i E takie, że |AE | = 2|EC | i |AD | = 2|DB | . Punkty F i G leżą na ramieniu BC tak, że odcinki DG i EF są prostopadłe do prostej BC (zobacz rysunek).


PIC


Pole trójkąta ABC jest równe 18. Zatem suma pól trójkątów CF E i BGD jest równa
A) 9 B) 6 C) 3 D) 2

Ukryj Podobne zadania

Punkty D i E są środkami odpowiednio podstawy AB i ramienia AC trójkąta równoramiennego ABC . Punkty F i G leżą na ramieniu BC tak, że odcinki DG i EF są prostopadłe do prostej BC (zobacz rysunek).


PIC


Pole trójkąta BGD jest równe 2, a pole trójkąta CF E jest równe 4. Zatem pole trójkąta ABC jest równe
A) 24 B) 8 C) 12 D) 16

Długości boków trójkąta są kolejnymi wyrazami ciągu arytmetycznego. Obwód trójkąta jest równy 33, a cosinus największego kąta jest równy 16 . Oblicz promień okręgu opisanego na tym trójkącie.

Prosta k : 2x + y + b = 0 ma dwa punkty wspólne z parabolą  2 y = −x − 3 wtedy i tylko wtedy, gdy
A) b < 2 B) b > − 2 C) b < − 2 D) b > 2

Uzasadnij, że jeżeli n jest liczbą całkowitą to liczba  2 √ -- 2 √ -- (n − 2n + 1)(n + 2n + 1 ) też jest liczbą całkowitą.

Wielomiany  2 W (x ) = ax(x + b) i  3 2 V (x) = x + 2x + x są równe. Oblicz a i b .

Ukryj Podobne zadania

Dwa boki trójkąta wpisanego w okrąg o promieniu R są odpowiednio równe 12 R i  √ -- R 3 . Oblicz długość trzeciego boku.

Punkty A = (− 2,4) i B = (6,− 2) są końcami podstawy trójkąta równoramiennego ABC . Prosta zawierająca wysokość CD tego trójkąta przecina prostą AB w punkcie
A) (2,1) B) (3 ,− 2 ) C) (− 3,2) D) (2,− 2)

Ukryj Podobne zadania

Punkty A = (8,− 1) i B = (− 4,5) są końcami podstawy trójkąta równoramiennego ABC . Prosta zawierająca wysokość CD tego trójkąta przecina prostą AB w punkcie
A) (6,− 3) B) (2,2 ) C) (− 1,− 2) D) (− 3,6)

Punkt K = (− 3,1) jest wierzchołkiem trójkąta równoramiennego KLM , w którym |KM | = |LM | . Odcinek MN jest wysokością trójkąta i N = (− 1,− 5) . Zatem
A) L = (1,− 11) B) L = (−2 ,−2 ) C) L = (− 5,− 9) D) L = (− 4,− 4)

Punkt K = (2,2) jest wierzchołkiem trójkąta równoramiennego KLM , w którym |KM | = |LM | . Odcinek MN jest wysokością trójkąta i N = (4,3 ) . Zatem
A) L = (5,3) B) L = (6,4) C) L = (3,5) D) L = (4,6)

Niech A będzie zbiorem wszystkich liczb x , które spełniają równość |x − 1|+ |x − 3 | = 2 . Niech B będzie zbiorem wszystkich punktów na osi liczbowej, których suma odległości od punktów 4 i 6 jest niewiększa niż 4. Zaznacz na osi liczbowej zbiory A i B oraz wszystkie punkty, które należą jednocześnie do A i do B .

Strona 448 z 461
spinner