Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Trójkąt prostokątny ma boki długości  √ -- 6,12,6 3 i kąty ostre α,β . Kąt β leży naprzeciw boku długości  √ -- 6 3 . Zatem
A) α = β B) α = 2 β C) β − α = 45∘ D) β = 2α

Ukryj Podobne zadania

Trójkąt prostokątny ma boki długości  √ -- 6,12,6 3 i kąty ostre α,β . Kąt β leży naprzeciw boku długości 6. Zatem
A) α = β B) α = 2 β C) β − α = 45∘ D) β = 2α

Trójkąt prostokątny ma boki długości  √ -- 5,10,5 3 i kąty ostre α,β . Kąt β leży naprzeciw boku długości  √ -- 5 3 . Zatem
A) α = β B) α = 3 β C) β − α = 30∘ D) β = 3α

Spośród 5 monet jednozłotowych, 7 dwuzłotowych i 6 pięciozłotowych wybieramy 3 monety. Oblicz prawdopodobieństwo, że wszystkie trzy monety będą miały ten sam nominał.

Kąt α jest ostry i  3 cosα = 5 . Wtedy wartość wyrażenia sinα − co sα jest równa
A) − 215 B) 45 C) 15 D) − 7 5

Dla jakich wartości parametru k ∈ R równanie  6 6 sin x + cos x = k ma rozwiązanie?

Okrąg o średnicy 6 jest styczny do osi Oy , a oś Ox jest jego osią symetrii. Środek tego okręgu ma współrzędne
A) (0,3) B) (6,0 ) C) (3,0) D) (0,6)

Punkty A ,B,C ,D dzielą okrąg na 4 równe łuki. Miara zaznaczonego na rysunku kąta wpisanego ACD jest równa


PIC


A) 9 0∘ B) 60∘ C) 45 ∘ D) 30∘

Ukryj Podobne zadania

Wykaż, że trójkąt ABC o wierzchołkach A = (5 ;−4 ) , B = (3;2) , C = (2;− 5) jest prostokątny.

Ukryj Podobne zadania

Wykaż, że trójkąt ABC o wierzchołkach A = (4;− 3) , B = (− 1;2 ) , C = (7;0) jest prostokątny.

Wykaż, że trójkąt ABC o wierzchołkach A = (1;2) , B = (6;3) , C = (4 ;5) jest prostokątny.

Wykaż, że trójkąt ABC o wierzchołkach A = (− 3;4) , B = (− 7;− 8) , C = (3;2) jest prostokątny.

Wykaż, że trójkąt o wierzchołkach A = (1 ,2 ),B = (− 2,− 4),C = (4,− 7) jest trójkątem prostokątnym.

Dana jest funkcja f określona wzorem  { f(x) = x− 2 dla x ≤ 0 ||x + 3|− 4| dla x > 0
Równanie f(x ) = 1 ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) cztery rozwiązania. D) pięć rozwiązań.

Ukryj Podobne zadania

Dana jest funkcja f określona wzorem  { f(x) = l∘og-|−--x√+--2|-- dla x ≤ 1 x − 6 x + 9 dla x > 1
Równanie f(x ) = 2 ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) trzy rozwiązania. D) cztery rozwiązania.

Dana jest funkcja f określona wzorem  { |3−x| f(x) = 2 dla |x| ≤ 4 log (|x |− 4) dla |x| > 4
Równanie f(x ) = 4 ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) trzy rozwiązania. D) cztery rozwiązania.

Dana jest funkcja f określona wzorem  { f(x) = ||x− 2|− 4| dla x < 0 x − 1 dla x ≥ 0
Równanie f(x ) = 2 ma dokładnie
A) jedno rozwiązanie. B) dwa rozwiązania. C) cztery rozwiązania. D) pięć rozwiązań.

Ile jest możliwych kodów czterocyfrowych utworzonych z cyfr {1 ,2,3,4,5,6,7,8,9} , w których są dokładnie dwie cyfry parzyste i dwie cyfry nieparzyste.

Punkt A = (23,22) jest wierzchołkiem trójkąta prostokątnego o polu 7030 . Prosta AC zawiera przeciwprostokątną tego trójkąta, a prosta zwierająca przyprostokątną AB ma równanie 3y − 4x + 26 = 0 . Środek okręgu wpisanego w trójkąt ABC ma współrzędne S = (−2 ,−3 ) . Oblicz współrzędne wierzchołków B i C tego trójkąta.

Liczbą odwrotną do liczby 3 4π jest liczba:
A) 34π- B) 43π- C) − 3π 4 D) 4π 3

Liczba wszystkich sposobów utworzenia liczb trzycyfrowych o różnych cyfrach ze zbioru {0 ,1,2,3,4,5} jest równa
A) 120 B) 100 C) 60 D) 60

Ukryj Podobne zadania

Ile jest wszystkich trzycyfrowych liczb naturalnych utworzonych z cyfr: 1, 3, 5, 7, 9, w których cyfry się nie powtarzają?
A) 60 B) 125 C) 120 D) 95

Wszystkich liczb naturalnych trzycyfrowych, w których zapisie dziesiętnym nie występuje cyfra 2, jest
A) 900 B) 729 C) 648 D) 512

Wszystkich liczb naturalnych pięciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 5, 7, jest
A) 53 B) 2 ⋅43 C) 2 ⋅34 D) 35

Liczb pięciocyfrowych, które można zapisać tylko za pomocą cyfr 0 i 1, jest
A) 5 B) 10 C) 16 D) 32

Aby odblokować telefon komórkowy należy użyć czterocyfrowego kodu PIN. Paweł ustalił, że jego kod PIN na parzystych miejscach będzie miał cyfrę nieparzystą, a na nieparzystych miejscach cyfrę parzystą oraz cyfry nie będą się powtarzać. Ile różnych kodów PIN może utworzyć Paweł?
A) 400 B) 300 C)  4 2 ⋅5 D) 2 ⋅45

Wszystkich liczb naturalnych trzycyfrowych, w których zapisie dziesiętnym nie występuje cyfra 9, jest
A) 900 B) 648 C) 729 D) 512

Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest
A) 9 ⋅8⋅ 7⋅6 B) 9⋅9 ⋅8 ⋅7 C) 10 ⋅9⋅ 8⋅7 D) 9 ⋅10⋅ 10⋅1 0

Wszystkich liczb naturalnych pięciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 3, 5, 7, jest
A) 3 ⋅44 B) 3 ⋅54 C) 54 D) 45

Liczba wszystkich dodatnich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry 0 i 2, jest równa
A) 8 ⋅8⋅ 8⋅3 B) 8⋅7 ⋅6 ⋅3 C) 8 ⋅10⋅ 10⋅ 4 D) 9 ⋅8⋅ 7⋅4

Wszystkich liczb pięciocyfrowych, w których występują wyłącznie cyfry 0, 2, 5, jest
A) 12 B) 36 C) 162 D) 243

Ile jest wszystkich dwucyfrowych liczb naturalnych utworzonych z cyfr: 1, 3, 5, 7, 9, w których cyfry się nie powtarzają?
A) 10 B) 15 C) 20 D) 25

Wszystkich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry: 5, 2, 4, 8, 7, jest
A) 500 B) 625 C) 250 D) 200

Wszystkich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry: 1, 2, 4, 8, 3, jest
A) 200 B) 625 C) 250 D) 500

Liczba wszystkich dodatnich liczb czterocyfrowych nieparzystych, w których zapisie nie występują cyfry 1 i 2, jest równa
A) 7 ⋅8⋅ 8⋅5 B) 8⋅7 ⋅6 ⋅5 C) 7 ⋅8⋅8 ⋅4 D) 8⋅ 7⋅7 ⋅4

Wszystkich liczb naturalnych sześciocyfrowych nieparzystych jest
A) 9 ⋅5 ⋅104 B) 9 ⋅2⋅ 104 C) 5 ⋅105 D) 4 ⋅10 6

Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym występują cztery różne cyfry parzyste jest
A) 120 B) 96 C) 625 D) 500

Do dwóch okręgów przecinających się w punktach A i B poprowadzono wspólną styczną MN , przy czym punkt M należy do pierwszego, a punkt N do drugiego okręgu. Wykaż, że prosta AB dzieli odcinek MN na połowy.

Punkt O jest środkiem okręgu. Kąt środkowy AOD ma miarę


PIC


A) 150 ∘ B) 120∘ C) 11 5∘ D) 85 ∘

Ukryj Podobne zadania

Punkt O jest środkiem okręgu. Kąt środkowy AOD ma miarę


PIC


A) 130 ∘ B) 120∘ C) 11 5∘ D) 85 ∘

Punkty ABCD leżą na okręgu o środku S (zobacz rysunek). Miara kąta DBC jest równa


PIC


A) 59∘ B) 3 4∘ C) 28∘ D) 32∘

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 70∘ B) 110∘ C) 14 0∘ D) 21 0∘

Ukryj Podobne zadania

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 160 ∘ B) 80∘ C) 10 0∘ D) 70 ∘

Miara kąta α (patrz rysunek obok) jest równa


PIC


A) 45∘ B) 5 0∘ C) 55∘ D) 60∘

Środek S okręgu opisanego na trójkącie ABC należy do boku BC . Suma miar kątów ABC i BCA trójkąta ABC jest równa
A) 30∘ B) 9 0∘ C) 60∘ D) 45∘

Ukryj Podobne zadania

Środek S okręgu opisanego na trójkącie ABC należy do boku BC . Miara kąta BAC trójkąta ABC jest równa
A) 30∘ B) 9 0∘ C) 60∘ D) 45∘

Punkty A = (5,− 3) , B = (− 3,5) , C = (− 7,1) i D = (1 ,− 7 ) są wierzchołkami prostokąta ABCD . Pole tego prostokąta jest równe
A) 16 B) 32 C) 64 D) 96

Wyznacz współrzędne środka okręgu opisanego na kwadracie, którego jeden z boków jest zawarty w prostej o równaniu y = 2x − 2 , a punkt A = (1,5) jest jego wierzchołkiem. Rozważ wszystkie przypadki.

Ukryj Podobne zadania
Strona 447 z 461
spinner