Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Środkiem okręgu opisanego na trójkącie jest punkt przecięcia się
A) dwusiecznych kątów trójkąta B) środkowych trójkąta
C) wysokości trójkąta D) symetralnych boków trójkąta

*Ukryj

Dla dowolnego trójkąta prawdziwe jest zdanie
A) Środek okręgu wpisanego w trójkąt to punkt przecięcia się środkowych trójkąta.
B) Środek okręgu wpisanego w trójkąt to punkt przecięcia się dwusiecznych kątów trójkąta
C) Środek okręgu opisanego na trójkącie to punkt przecięcia się dwusiecznych kątów trójkąta.
D) Środek okręgu opisanego na trójkącie to punkt przecięcia się wysokości trójkąta

Punkt P jest punktem wspólnym środkowych AD i BE w trójkącie ABC . Wówczas odcinki AP i PD mogą mieć długości
A)  √ -- |AP | = 2, |PD | = √1- 2 B) |AP | = 3, |PD | = 6
C) |AP | = 9, |P D | = 3 D) |AP | = 3, |P D | = 9

Dany jest trójkąt o bokach długości a,b,c . Stosunek a : b : c jest równy 3:5:7. Które zdanie jest fałszywe?
A) Liczba c jest o 12,5% mniejsza od liczby a+ b
B) Liczba a stanowi 20% liczby a+ b+ c
C) Liczba a stanowi 25% liczby b + c
D) Liczba b to 60% liczby c .

Nie jest prawdziwe zdanie
A) Środek ciężkości trójkąta to punkt przecięcia się wysokości trójkąta.
B) Środek okręgu wpisanego w trójkąt to punkt przecięcia się dwusiecznych kątów trójkąta.
C) Środek okręgu opisanego na trójkącie to punkt przecięcia się symetralnych boków trójkąta.
D) Środkowe trójkąta dzielą się w stosunku 1 : 2 .

*Ukryj

Nie jest prawdziwe zdanie
A) Środek ciężkości trójkąta to punkt przecięcia się środkowych trójkąta.
B) Środek okręgu wpisanego w trójkąt to punkt przecięcia się dwusiecznych kątów trójkąta.
C) Środek okręgu opisanego na trójkącie to punkt przecięcia się symetralnych boków trójkąta.
D) Środkowe trójkąta dzielą się w stosunku 2 : 3 .

Nie jest prawdziwe zdanie
A) Środek ciężkości trójkąta to punkt przecięcia się środkowych trójkąta.
B) Środek okręgu wpisanego w trójkąt to punkt przecięcia się dwusiecznych kątów trójkąta.
C) Środek okręgu opisanego na trójkącie to punkt przecięcia się wysokości trójkąta.
D) Środkowe trójkąta dzielą się w stosunku 1 : 2 .