Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Prawidłowy trójkątny/Przekroje

Wyszukiwanie zadań

Dany jest ostrosłup prawidłowy trójkątny, w którym długość krawędzi podstawy jest równa a . Kąt między krawędzią boczną i krawędzią podstawy ma miarę 4 5∘ . Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej jej krawędzi bocznej. Sporządź rysunek ostrosłupa i zaznacz otrzymany przekrój. Oblicz pole tego przekroju.

Ukryj Podobne zadania

Dany jest ostrosłup prawidłowy trójkątny, w którym długość krawędzi podstawy jest równa a . Kąt między krawędzią boczną i krawędzią podstawy ma miarę 3 0∘ . Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej jej krawędzi bocznej. Sporządź rysunek ostrosłupa i zaznacz otrzymany przekrój. Oblicz pole tego przekroju.

Dany jest ostrosłup prawidłowy trójkątny ABCS o podstawie ABC . Krawędź podstawy tego ostrosłupa ma długość a . Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem α takim, że  √ - cos α = --3 3 . Przez środek K krawędzi CA i środek L krawędzi AB poprowadzono płaszczyznę π prostopadłą do płaszczyzny SBC . Oblicz pole otrzymanego przekroju.

Krawędź boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem α . Przez krawędź podstawy tego ostrosłupa poprowadzono płaszczyznę, która jest nachylona do płaszczyzny podstawy pod katem β , i która przecina przeciwległą krawędź ostrosłupa (zobacz rysunek).


PIC


Oblicz stosunek pola powierzchni otrzymanego przekroju do pola powierzchni podstawy ostrosłupa jeżeli wiadomo, że 5 sinα = 4sin(α + β ) .

Ostrosłup prawidłowy trójkątny przecięto płaszczyzną, która przechodzi przez krawędź podstawy długości a oraz jest prostopadła do przeciwległej krawędzi bocznej. Płaszczyzna ta jest nachylona do płaszczyzny podstawy pod kątem α . Oblicz objętość ostrosłupa.

Wysokość ostrosłupa prawidłowego trójkątnego jest równa 4, a krawędź podstawy ma długość 1. Ostrosłup przecięto płaszczyzną, która przechodzi przez krawędź podstawy oraz jest prostopadła do przeciwległej krawędzi bocznej. Oblicz pole powierzchni tego przekroju.

Dany jest ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość a i krawędź boczna jest od niej dwa razy dłuższa. Oblicz cosinus kąta między krawędzią boczną i krawędzią podstawy ostrosłupa. Narysuj przekrój ostrosłupa płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej i oblicz pole tego przekroju.


PIC


Ostrosłup prawidłowy trójkątny przecięto płaszczyzną przechodzącą przez krawędź podstawy długości a i środek wysokości ostrosłupa. Płaszczyzna ta jest nachylona do płaszczyzny podstawy pod kątem α . Oblicz objętość i pole powierzchni bocznej ostrosłupa.

spinner