Dany jest ostrosłup prawidłowy trójkątny, w którym długość krawędzi podstawy jest równa . Kąt między krawędzią boczną i krawędzią podstawy ma miarę . Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej jej krawędzi bocznej. Sporządź rysunek ostrosłupa i zaznacz otrzymany przekrój. Oblicz pole tego przekroju.
/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Prawidłowy trójkątny/Przekroje
Dany jest ostrosłup prawidłowy trójkątny, w którym długość krawędzi podstawy jest równa . Kąt między krawędzią boczną i krawędzią podstawy ma miarę . Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej jej krawędzi bocznej. Sporządź rysunek ostrosłupa i zaznacz otrzymany przekrój. Oblicz pole tego przekroju.
Dany jest ostrosłup prawidłowy trójkątny o podstawie . Krawędź podstawy tego ostrosłupa ma długość . Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem takim, że . Przez środek krawędzi i środek krawędzi poprowadzono płaszczyznę prostopadłą do płaszczyzny . Oblicz pole otrzymanego przekroju.
Krawędź boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem . Przez krawędź podstawy tego ostrosłupa poprowadzono płaszczyznę, która jest nachylona do płaszczyzny podstawy pod katem , i która przecina przeciwległą krawędź ostrosłupa (zobacz rysunek).
Oblicz stosunek pola powierzchni otrzymanego przekroju do pola powierzchni podstawy ostrosłupa jeżeli wiadomo, że .
Ostrosłup prawidłowy trójkątny przecięto płaszczyzną, która przechodzi przez krawędź podstawy długości oraz jest prostopadła do przeciwległej krawędzi bocznej. Płaszczyzna ta jest nachylona do płaszczyzny podstawy pod kątem . Oblicz objętość ostrosłupa.
Wysokość ostrosłupa prawidłowego trójkątnego jest równa 4, a krawędź podstawy ma długość 1. Ostrosłup przecięto płaszczyzną, która przechodzi przez krawędź podstawy oraz jest prostopadła do przeciwległej krawędzi bocznej. Oblicz pole powierzchni tego przekroju.
Dany jest ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość i krawędź boczna jest od niej dwa razy dłuższa. Oblicz cosinus kąta między krawędzią boczną i krawędzią podstawy ostrosłupa. Narysuj przekrój ostrosłupa płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej i oblicz pole tego przekroju.
Ostrosłup prawidłowy trójkątny przecięto płaszczyzną przechodzącą przez krawędź podstawy długości i środek wysokości ostrosłupa. Płaszczyzna ta jest nachylona do płaszczyzny podstawy pod kątem . Oblicz objętość i pole powierzchni bocznej ostrosłupa.