W okrąg wpisano trapez równoramienny , którego podstawy mają długości: , . Styczna do okręgu w punkcie przecina prostą w punkcie (rys). Wiedząc, że oblicz promień okręgu opisanego na trapezie .
W okrąg wpisano trapez równoramienny , którego podstawy mają długości: , . Styczna do okręgu w punkcie przecina prostą w punkcie (rys). Wiedząc, że oblicz promień okręgu opisanego na trapezie .
Na trapezie opisano okrąg o promieniu długości 25 cm. Dłuższa podstawa trapezu jest średnicą tego okręgu. Wiedząc że przekątna tego trapezu ma długość 40 cm, oblicz obwód tego trapezu.
Trapez (, ) jest wpisany w okrąg o promieniu długości . Wiadomo że kąt ostry trapezu ma miarę zaś , gdzie jest przekątną trapezu. Oblicz długość dłuższej podstawy tego trapezu oraz długość jego wysokości.
Oblicz promień okręgu opisanego na trapezie równoramiennym, w którym sinus kąta ostrego jest równy , a przekątna ma długość 12.
Podstawy trapezu równoramiennego mają długości 3 i 5, a jego ramię ma długość 2. Oblicz promień okręgu opisanego na tym trapezie.
W okrąg wpisano trapez równoramienny w ten sposób, że podstawa jest średnicą tego okręgu. Ramię trapezu ma długość 10, a jego przekątna jest o 11 dłuższa od promienia okręgu. Oblicz wysokość tego trapezu.
Na trapezie można opisać okrąg. Jedna z jego podstaw jest dwa razy dłuższa od drugiej, a przekątna dzieli kąt przy dłuższej podstawie na połowy. Oblicz długości boków trapezu wiedząc, że jego ple jest równe .
W półkole o promieniu wpisano trapez równoramienny o krótszej podstawie długości . Oblicz długość przekątnej trapezu.
W półkole o promieniu wpisano trapez równoramienny o przekątnej długości . Oblicz długość krótszej podstawy trapezu.