Trójkąty równoboczne i są położone tak, jak na poniższym rysunku. Wykaż, że .
Trójkąty równoboczne i są położone tak, jak na poniższym rysunku. Wykaż, że .
Na ramionach i trójkąta równoramiennego wybrano punkty i w ten sposób, że odcinek jest równoległy do podstawy i styczny do okręgu wpisanego w trójkąt . Wykaż, że pole trójkąta jest równe
Każdy kąt trójkąta ma miarę mniejszą od . Wyznacz taki punkt wewnątrz trójkąta , dla którego suma jest najmniejsza możliwa.
Na okręgu o promieniu opisano trapez, w którym i .
Wykaż, że .
W trapezie połączono środek ramienia trapezu z końcami drugiego ramienia . Wykaż, że pole powstałego trójkąta jest równe połowie pola trapezu .
Punkt jest środkiem boku . Udowodnij, że pole trójkąta jest połową pola trapezu ().
Z punktu należącego do boku trójkąta równobocznego poprowadzono półprostą dzielącą trójkąt na dwie figury o równych polach. Oblicz tangens kąta jaki tworzy ta półprosta z odcinkiem , jeśli i .
Dane są dwa półokręgi o wspólnym środku i średnicach odpowiednio i (punkty i są współliniowe).
Punkt leży na wewnętrznym półokręgu, punkt leży na zewnętrznym półokręgu, punkty i są współliniowe. Udowodnij, że .
Na przyprostokątnych i trójkąta prostokątnego zbudowano, na zewnątrz trójkąta, kwadraty i . Odcinek przecina przyprostokątną w punkcie , a odcinek przecina przyprostokątną w punkcie (zobacz rysunek). Udowodnij, że .
W trójkącie równoramiennym , w którym wysokość jest dwa razy dłuższa od wysokości (patrz rysunek). Oblicz kosinusy wszystkich kątów wewnętrznych trójkąta .
W trójkącie równobocznym o wysokości obrano punkt , z którego poprowadzono odcinki prostopadłe do boków tego trójkąta. Wykaż, że suma długości tych odcinków jest równa .
Wykaż, że trójkąt, którego długości boków są trzema kolejnymi wyrazami ciągu geometrycznego, miary kątów zaś trzema kolejnymi wyrazami ciągu arytmetycznego jest trójkątem równobocznym.
Na przyprostokątnych i trójkąta prostokątnego równoramiennego zaznaczono odpowiednio punkty i tak, że . Odcinki i przecinają się w punkcie . Oblicz .
Wykaż, że jeżeli długości boków trójkąta spełniają równość
to promień okręgu opisanego na tym trójkącie jest równy .
Wewnątrz trójąta obrano punkt odległy od prostych i odpowiednio o . Wykaż że
gdzie jest polem trójkąta, a promieniem okręgu opisanego. Dla jakich punktów zachodzi równość?
Odcinki i są równoległe do boku trójkąta , a odcinki i są równoległe do boku . Uzasadnij, że jeżeli , to .
Trzy okręgi o promieniach 2, 4 i 6 są parami zewnętrznie styczne. Oblicz długość promienia okręgu zawierającego punkty styczności tych okręgów.
Podstawy trapezu mają długości i (). Suma miar kątów wewnętrznych przy dłuższej podstawie wynosi . Oblicz długość odcinka łączącego środki podstaw trapezu.
Podstawy trapezu mają długości i . Na ramionach trapezu wybrano punkty i w ten sposób, że odcinek jest równoległy do podstaw oraz . Oblicz długość odcinka .
Odcinek jest środkową trójkąta . Udowodnij, że .
Okrąg wpisany w trójkąt jest styczny do boków i w punktach i odpowiednio. Na bokach i tego trójkąta wybrano punkty i w ten sposób, że odcinek jest styczny do okręgu wpisanego w trójkąt (zobacz rysunek).
Wykaż, że jeżeli , i , to trójkąt jest rozwartokątny.