Zadania.info Największy internetowy zbiór zadań z matematyki

/Konkursy/Zadania/Geometria/Planimetria

Wyszukiwanie zadań

Wykaż, że suma odległości dowolnego punktu wewnętrznego trójkąta od jego wierzchołków jest większa od połowy obwodu trójkąta.

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku. Jaka figurę otrzymamy, łącząc kolejno środki boków: a) rombu, b) prostokąta, c) kwadratu?

Ukryj Podobne zadania

Uzasadnij, że środki boków dowolnego czworokąta są wierzchołkami równoległoboku.

Na bokach AD i DC kwadratu ABCD o polu 1 wybrano punkty K i L w ten sposób, że |∡KBL | = 45∘ .


PIC


Oblicz odległość punktu B od prostej KL .

Dwa okręgi są styczne wewnętrznie w punkcie M . Cięciwa AB większego okręgu jest styczna do mniejszego okręgu w punkcie N . Oznaczmy przez A 1 i B1 punkty przecięcia prostych MA i MB z mniejszym okręgiem. Udowodnić, że

  • prosta A 1B1 jest równoległa do prostej AB ;
  • prosta MN jest dwusieczną kąta AMB .

W trapezie ABCD podstawa AB jest 3 razy dłuższa od podstawy CD . Przekątne tego trapezu przecinają się w punkcie E , a proste zawierające ramiona AD i BC przecinają się w punkcie F . Oblicz stosunek pola czworokąta DECF do pola trapezu ABCD .

W trójkącie ostrokątnym ABC prawdziwa jest równość  2 2 |BC | − |AC | = |AB |⋅|AC | . Wykaż, że kąt BAC jest dwa razy większy od kąta ABC .

Przekątne czworokąta wypukłego ABCD przecinają się w punkcie E . Wiadomo, że trójkąty ABE i CDE mają równe pola, długość boku AB jest równa 4, a przekątna AC jest zawarta w dwusiecznej kąta A . Oblicz długość boku BC .

Wykaż, że jeżeli α,β ,γ są kątami trójkąta, to

 α β γ sinα + sin β + sin γ = 4co s--cos --cos -. 2 2 2

Wyznacz długości boków trójkąta wiedząc, że są one kolejnymi liczbami naturalnymi zaś największy kąt jest dwa razy większy od kąta najmniejszego.

Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że |BC |2 = 4⋅ |DN |⋅ |DM | .


PIC


Ukryj Podobne zadania

Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że skala podobieństwa trójkątów ABC i ANM jest równa -2cosα- 1+cos2α .


PIC


Trzy koła o promieniu 1 są parami styczne zewnętrznie. Oblicz pole obszaru zawartego między tymi kołami.

Ramiona kąta o mierze  ∘ 60 przecięto prostą k prostopadłą do jednego z ramion kąta i wpisano dwa koła styczne do obu ramion tego kąta i prostej k . Oblicz stosunek pól tych kół.

Na okręgu o środku S wybrano punkty A ,B,C i D w ten sposób, że prosta AB zawiera punkt S , a proste AD i BC przecinają się w punkcie E . Punkt M jest punktem wspólnym prostych AC i BD . Wykaż, że proste EM i AB są prostopadłe.


PIC


Na bokach AB , BC i CA trójkąta ABC wybrano odpowiednio punkty D ,E i F . Wykaż, że okręgi opisane na trójkątach ADF , BED i CF E przecinają się w jednym punkcie.

Oblicz długość boku rombu wiedząc, że prosta poprowadzona przez jeden z jego wierzchołków odcina na przedłużeniach dwóch jego boków odcinki o długościach 4 i 9.

W prostokąt ABCD wpisany jest trójkąt równoboczny AKL (patrz rysunek). Wierzchołek K leży na boku BC (K ⁄= B i K ⁄= C ), wierzchołek L leży na boku DC (L ⁄= D i L ⁄= C ). Udowodnij, że pole powierzchni trójkąta KLC równe jest sumie pól trójkątów ABK i DLA .


PIC


Na okręgu wybrano takich pięć różnych punktów: A ,A 1,A 2,A 3,A 4 , że

|∡A 1AA 2| = |∡A 2AA 3| = |∡A 3AA 4| = 45∘.

Udowodnij, że punkty A 1,A 2,A 3,A 4 są wierzchołkami kwadratu.

Dany jest prostokąt ABCD . Okrąg wpisany w trójkąt BCD jest styczny do przekątnej BD w punkcie N . Okrąg wpisany w trójkąt ABD jest styczny do boku AD w punkcie M , a środek S tego okręgu leży na odcinku MN , jak na rysunku.


PIC


Wykaż, że |MN | = |AD | .

W półkolu o o średnicy |AB | = 2R narysowano dwa przystające i zewnętrznie styczne półkola o 1,o 2 , których środki leżą na odcinku AB , i które są wewnętrznie styczne do półkola o . Oblicz promień okręgu o3 , który jest styczny do o ,o 1 2 i o .


PIC


W trójkącie prostokątnym ABC o kącie prostym w wierzchołku C obrano taki punkt P , że pola trójkątów PAB , PBC i PAC są równe. Oblicz długość odcinka PC , wiedząc, że |PA |2 + |PB |2 = m .

Strona 6 z 9
spinner