Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup

Wyszukiwanie zadań

Objętość ostrosłupa prawidłowego czworokątnego jest równa 384. Wysokość ściany bocznej tego ostrosłupa tworzy z płaszczyzną podstawy kąt o mierze α taki, że tg α = 43 .


ZINFO-FIGURE


Oblicz wysokość ściany bocznej tego ostrosłupa.

Ukryj Podobne zadania

Objętość ostrosłupa prawidłowego czworokątnego jest równa 400. Wysokość ściany bocznej tego ostrosłupa tworzy z płaszczyzną podstawy kąt o mierze α taki, że tg α = 125- .


ZINFO-FIGURE


Oblicz wysokość ściany bocznej tego ostrosłupa.

Podstawą ostrosłupa trójkątnego ABCS jest trójkąt prostokątny ABC , w którym |∡ACB | = 9 0∘ i |AC | : |BC | = 15 : 8 (zobacz rysunek). Punkt D jest środkiem okręgu opisanego na trójkącie ABC , a odcinek SD jest wysokością ostrosłupa. Objętość ostrosłupa jest równa 8, a pole ściany ABS jest równe 17. Oblicz długość krawędzi SC ostrosłupa


PIC


W ostrosłupie prawidłowym trójkątnym kąt płaski przy wierzchołku ostrosłupa ma miarę α , zaś odległość wierzchołka podstawy od krawędzi bocznej, do której nie należy, jest równa d . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

W ostrosłupie prawidłowym czworokątnym o krawędzi podstawy 18 cm, kąt między wysokościami przeciwległych ścian bocznych ma miarę α = 60∘ . Oblicz pole powierzchni bocznej tego ostrosłupa. Wykonaj odpowiedni rysunek i zaznacz kąt α .

Ukryj Podobne zadania

W ostrosłupie prawidłowym czworokątnym o krawędzi podstawy 12 cm, kąt między wysokościami przeciwległych ścian bocznych ma miarę α = 90∘ . Oblicz pole powierzchni bocznej tego ostrosłupa. Wykonaj odpowiedni rysunek i zaznacz kąt α .

Ostrosłup prawidłowy trójkątny przecięto płaszczyzną przechodzącą przez krawędź podstawy długości a i środek wysokości ostrosłupa. Płaszczyzna ta jest nachylona do płaszczyzny podstawy pod kątem α . Oblicz objętość i pole powierzchni bocznej ostrosłupa.

Podstawą ostrosłupa jest prostokąt o bokach 6 cm i 8 cm. Każda krawędź boczna jest nachylona do płaszczyzny podstawy pod katem 60∘ . Oblicz pole powierzchni ostrosłupa.

Krawędź boczna ostrosłupa prawidłowego trójkątnego jest nachylona do płaszczyzny podstawy pod kątem 6 0∘ . Odległość spodka wysokości ostrosłupa od krawędzi bocznej jest równa 4. Oblicz objętość tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym krawędź boczna ma długość 6, a pole ściany bocznej jest równe  √ -- 9 3 . Oblicz objętość tego ostrosłupa.

Odległość środka podstawy ostrosłupa prawidłowego czworokątnego od krawędzi bocznej równa się a , a kąt płaski ściany bocznej przy wierzchołku ostrosłupa równa się 2α . Oblicz wysokość ostrosłupa.

Podstawą ostrosłupa ABCD jest trójkąt równoramienny ABC , w którym |AB | = |AC | = 7 , |BC | = 6 . Krawędzie boczne mają długości: |DA | = 7 , |DB | = |DC | = 5 . Oblicz objętość tego ostrosłupa.

W ostrosłupie prawidłowym czworokątnym wysokości przeciwległych ścian bocznych, poprowadzone z wierzchołka ostrosłupa, są do siebie prostopadłe.

  • Oblicz sinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.
  • Jakim procentem objętości sześcianu, którego krawędź ma długość równą długości krawędzi podstawy danego ostrosłupa, jest objętość tego ostrosłupa?

Podstawą ostrosłupa ABCD jest trójkąt równoramienny o podstawie |AB | = b i kącie α pomiędzy ramionami. Krawędź CD jest wysokością ostrosłupa, a kąt nachylenia ściany ABD do podstawy ostrosłupa jest równy β . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Dane są dwie bryły: stożek, w którym długość promienia podstawy jest równa 2 dm i wysokość ma długość 2π- dm oraz ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość 4 dm. Wiedząc, że objętości tych brył są równe, wyznacz kąt nachylenia ściany bocznej ostrosłupa do jego podstawy.

Podstawą ostrosłupa ABCDS jest kwadrat ABCD . Trójkąt równoramienny ASD ma ramię długości 15 i jest prostopadły do podstawy ostrosłupa. Krawędź BS ma długość 17. Oblicz pole przekroju ostrosłupa płaszczyzną BCE , gdzie E jest środkiem krawędzi SA .

W graniastosłupie prawidłowym czworokątnym ABCDEF GH przekątna AC podstawy ma długość 4. Kąt ACE jest równy 6 0∘ . Oblicz objętość ostrosłupa ABCDE przedstawionego na poniższym rysunku.


PIC


Dany jest ostrosłup prawidłowy sześciokątny. Wysokość ściany bocznej tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 30∘ i ma długość równą 6 (zobacz rysunek).


ZINFO-FIGURE


Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Krawędź boczna ostrosłupa prawidłowego czworokątnego jest nachylona do płaszczyzny podstawy pod kątem α takim, że sin α = 13 . Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej ma długość  √ -- 4 3 , a ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ . Oblicz objętość ostrosłupa.

Ukryj Podobne zadania

Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ , a krawędź boczna ma długość  √ -- 2 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.


PIC


Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS , w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ , a krawędź boczna ma długość 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.


PIC


Strona 11 z 11
spinner