Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup

Wyszukiwanie zadań

Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa 6. Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt α jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta α .


PIC


Ostrosłup prawidłowy czworokątny przecięto płaszczyzna przechodzącą przez krawędź podstawy i przecinającą przeciwległe krawędzie boczne w punktach jednakowo odległych od wierzchołka ostrosłupa. Przekrój ten jest trapezem o podstawach długości 12 i 8. Oblicz pole tego przekroju, jeżeli wysokość ostrosłupa ma długość 18.

Ukryj Podobne zadania

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . Krawędź podstawy tego ostrosłupa ma długość a . Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem o mierze α takim, że  √10- cosα = 10 . Przez krawędź BC podstawy ostrosłupa poprowadzono płaszczyznę π prostopadłą do ściany bocznej SAD . Sporządź rysunek tego ostrosłupa, zaznacz na rysunku przekrój wyznaczony przez płaszczyznę π i nazwij figurę, która jest tym przekrojem. Oblicz pole otrzymanego przekroju.

Objętość ostrosłupa prawidłowego czworokątnego ABCDS o podstawie ABCD jest równa 224, a promień okręgu opisanego na podstawie ABCD jest równy  √ --- 2 14 . Oblicz cosinus kąta między wysokością tego ostrosłupa i jego ścianą boczną.

Podstawą ostrosłupa ABCS jest trójkąt ABC o bokach długości 18 cm i 12 cm, którego kąt między tymi bokami ma miarę równą 60∘ . Wszystkie krawędzie boczne ostrosłupa ABCS mają długości równe 12 cm. Ostrosłup ten przecięto płaszczyzną równoległą do podstawy i dzielącą jego wysokość w stosunku 1:2, licząc od wierzchołka tego ostrosłupa. Wykonaj rysunek ostrosłupa ABCS z zaznaczonym przekrojem i oblicz:

  • obwód otrzymanego przekroju,
  • objętość tej z brył wyznaczonych przez przekrój, która nie jest podobna do ostrosłupa ABCS .

Objętość ostrosłupa prawidłowego trójkątnego ABCS jest równa  √ -- 6 3 , a krawędź boczna tworzy z płaszczyzną podstawy kąt 3 0∘ . Oblicz pole powierzchni bocznej tego ostrosłupa.

Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się  √ -- a2--15 4 , gdzie a oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem β . Oblicz cosβ i korzystając z tablic funkcji trygonometrycznych i odczytaj przybliżoną wartość β z dokładnością do 1 ∘ .


PIC


Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . Pole trójkąta ASC jest równe 120, a cosinus kąta ASB jest równy 141649- . Oblicz pole powierzchni bocznej tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym długość krawędzi podstawy jest równa a i jest 4 razy większa niż odległość środka podstawy od ściany bocznej. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCD jest trójkąt ABC . Krawędź AD jest wysokością ostrosłupa (zobacz rysunek).


PIC


Oblicz objętość ostrosłupa ABCD , jeśli wiadomo, że |AD | = 12, |BC | = 6,|BD | = |CD | = 13 .

Ukryj Podobne zadania

Podstawą ostrosłupa ABCD jest trójkąt ABC . Krawędź AD jest wysokością ostrosłupa (zobacz rysunek).


PIC


Oblicz objętość ostrosłupa ABCD , jeśli wiadomo, że |AD | = 24,|BC | = 12,|BD | = |CD | = 26 .

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . W trójkącie równoramiennym ASC stosunek długości podstawy do długości ramienia jest równy |AC | : |AS | = 6 : 5 . Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.

Podstawą ostrosłupa ABCDS jest prostokąt ABCD o bokach długości |AB | = 7 i |BC | = 14 . Krawędź CS jest prostopadła do podstawy. Najdłuższa krawędź boczna tworzy z podstawą kąt 50∘ . Wykonaj rysunek pomocniczy tego ostrosłupa oraz oblicz jego objętość.

Podstawą ostrosłupa jest romb. Wysokość ostrosłupa ma długość  √ -- 12 3 cm , a spodek O tej wysokości jest punktem przecięcia przekątnych. Każda ze ścian bocznych ostrosłupa tworzy z płaszczyzną podstawy kąt o mierze 60∘ .

  • Zaznacz na rysunku kąt nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa oraz poprowadź odcinek OP , którego długość jest równa odległości punktu O od ściany bocznej.
  • Oblicz odległość punktu O od ściany bocznej.

PIC

W ostrosłup prawidłowy trójkątny wpisano kulę o promieniu r . Ściana boczna ostrosłupa nachylona jest do płaszczyzny podstawy pod kątem 2α . Oblicz objętość tego ostrosłupa.

Wysokość ostrosłupa prawidłowego czworokątnego jest 2 razy dłuższa od krawędzi jego podstawy. Przez przekątną podstawy i środek rozłącznej z nią krawędzi bocznej poprowadzono płaszczyznę. Oblicz pole otrzymanego przekroju, wiedząc, że krawędź podstawy ostrosłupa ma długość a .

Ukryj Podobne zadania

Wysokość ostrosłupa prawidłowego czworokątnego jest 2,5 razy dłuższa od krawędzi jego podstawy. Przez przekątną podstawy i środek rozłącznej z nią krawędzi bocznej poprowadzono płaszczyznę. Oblicz pole otrzymanego przekroju, wiedząc, że krawędź podstawy ostrosłupa ma długość a .

Suma długości wszystkich krawędzi ostrosłupa prawidłowego trójkątnego jest równa 96, a krawędź boczna tworzy z płaszczyzną podstawy kąt, którego cosinus jest równy √ - --3 9 . Oblicz pole powierzchni bocznej tego ostrosłupa.

W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa  √ - 5--3 4 , a pole powierzchni bocznej tego ostrosłupa jest równe 15√-3 4 . Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa jest kwadrat ABCD o boku długości 40. Pola ścian bocznych ABS , BCS , CDS i ADS są odpowiednio równe: 740,  √ -- 24 0 5 , 260 i 400. Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest kwadrat ABCD o boku długości 4. Odcinek DS jest wysokością ostrosłupa i ma długość 6. Punkt M jest środkiem odcinka DS . Oblicz pole przekroju ostrosłupa płaszczyzną BCM .

Pole podstawy ostrosłupa prawidłowego trójkątnego jest równe  √ -- 2 9 3 cm , a jego pole powierzchni bocznej jest równe  √ -- 18 3 cm 2 . Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest trapez prostokątny, w którym jedna z podstaw ma długość 7, a jedna z przekątnych ma długość √ --- 34 . Krawędź AS jest wysokością ostrosłupa oraz  √ ---- |AS | = 7, |CS | = 107 . Oblicz objętość tego ostrosłupa.

Strona 10 z 11
spinner