Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup

Wyszukiwanie zadań

Wysokość ostrosłupa prawidłowego czworokątnego jest równa 8. Krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem 40 ∘ . Oblicz objętość tego ostrosłupa.

Ukryj Podobne zadania

Wysokość ostrosłupa prawidłowego czworokątnego jest równa 6. Krawędź boczna jest nachylona do płaszczyzny podstawy pod kątem 30 ∘ . Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest trapez ABCD . Przekątna AC tego trapezu ma długość  √ -- 8 3 , jest prostopadła do ramienia BC i tworzy z dłuższą podstawą AB tego trapezu kąt o mierze 30∘ . Każda krawędź boczna tego ostrosłupa ma tę samą długość  √ -- 4 5 . Oblicz odległość spodka wysokości tego ostrosłupa od jego krawędzi bocznej SD .

Ukryj Podobne zadania

Podstawą ostrosłupa ABCDS jest trapez ABCD . Przekątna AC tego trapezu ma długość  √ -- 4 6 , jest prostopadła do ramienia BC i tworzy z dłuższą podstawą AB tego trapezu kąt o mierze 30∘ . Każda krawędź boczna tego ostrosłupa ma tę samą długość 9. Oblicz odległość spodka wysokości tego ostrosłupa od jego krawędzi bocznej SD .

Przedstawiona na rysunku bryła to ostrosłup prawidłowy czworokątny ścięty płaszczyzną równoległą do jego płaszczyzny podstawy. Wysokość tej bryły jest równa H , a a i b (a > b ) są długościami krawędzi jego podstaw. Oblicz objętość tej bryły.


PIC


Podstawą ostrosłupa ABCD jest trójkąt ABC . Krawędź AD jest wysokością ostrosłupa (zobacz rysunek).


PIC


Oblicz objętość ostrosłupa ABCD , jeśli wiadomo, że |BC | = 8, |BD | = |CD | = 14 oraz pole podstawy jest równe 24.

Pole przekroju ostrosłupa prawidłowego czworokątnego płaszczyzną przechodzącą przez przekątną podstawy i równoległą do krawędzi bocznej rozłącznej z tą przekątną wynosi x . Oblicz pole przekroju ostrosłupa płaszczyzną zawierającą środki dwóch sąsiednich boków podstawy i środek wysokości ostrosłupa.

Podstawą ostrosłupa jest trójkąt, którego jeden bok ma długość 4, a kąty przyległe do tego boku mają miary 75 ∘ i 45∘ . Wysokość ostrosłupa ma długość równą długości promienia koła opisanego na podstawie. Oblicz objętość ostrosłupa. Wynik podaj w postaci a+ b⋅√c , gdzie a , b , c są liczbami wymiernymi.

Ukryj Podobne zadania

Podstawą ostrosłupa jest trójkąt, którego jeden z boków ma długość 6, a kąty przyległe do niego mają miary 45∘ i 105∘ . Wysokość ostrosłupa ma długość równą długości promienia okręgu opisanego na podstawie. Oblicz objętość ostrosłupa. Wynik podaj w postaci a+ b⋅√c- , gdzie a , b , c są liczbami wymiernymi.

Długość krawędzi bocznej ostrosłupa prawidłowego trójkątnego ABCS jest równa  √ -- 5 3 (zobacz rysunek). Krawędź boczna tworzy z wysokością tego ostrosłupa kąt α taki, że tg α = 1 2 . Oblicz objętość tego ostrosłupa.


ZINFO-FIGURE


W ostrosłupie prawidłowym trójkątnym ABCS krawędź podstawy ma długość 12, a jego objętość jest równa  √ -- 72 3 . Kąt α jest kątem między krawędziami bocznymi SA i SB (zobacz rysunek). Oblicz sinus kąta α .


PIC


W ostrosłupie prawidłowym czworokątnym dane są: H – wysokość ostrosłupa oraz α — miara kąta utworzonego przez krawędź boczną i krawędź podstawy (45∘ < α < 90∘ ).

  • Wykaż, że objętość V tego ostrosłupa jest równa 4⋅ -H-3-- 3 tg2α−1 .
  • Oblicz miarę kąta α , dla której objętość V danego ostrosłupa jest równa 2 3 9H . Wynik podaj w zaookrągleniu do całkowitej liczby stopni.

PIC

Przekrój ostrosłupa prawidłowego czworokątnego zawierającego przekątną podstawy oraz wierzchołek ostrosłupa jest trójkątem równobocznym o polu S . Oblicz objętość tego ostrosłupa . Wykonaj rysunek pomocniczy.

Ostrosłup F1 jest podobny do ostrosłupa F2 . Objętość ostrosłupa F1 jest równa 64, a objętość ostrosłupa F2 jest równa 512. Oblicz stosunek pola powierzchni całkowitej ostrosłupa F2 do pola powierzchni całkowitej ostrosłupa F 1 .

Podstawą ostrosłupa ABCS jest trójkąt ABC , w którym |AB | = 4, |BC | = 6 , |CA | = 8 . Wszystkie ściany boczne tworzą z płaszczyzną podstawy kąt 60∘ . Oblicz objętość ostrosłupa.

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt ABC . Punkty E i F są rzutami punktów A i S na przeciwległe ściany. Oblicz w jakim stosunku odcinek AE dzieli odcinek SF , jeżeli ściana boczna ostrosłupa jest nachylona do podstawy pod kątem, którego sinus jest równy a .

Podstawą ostrosłupa ABCDS jest prostokąt ABCD . Spodkiem wysokości ostrosłupa jest środek E krawędzi CD . Oblicz tangens kąta między ścianami bocznymi ABS i CBS tego ostrosłupa jeżeli |AB | = 2|BC | i |SE | = 3|BC | .

W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy pod kątem 6 0∘ . Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCDS jest trapez równoramienny ABCD , którego ramiona mają długość  √ -- |AD | = |BC | = 16 2 i tworzą z podstawą AB kąt ostry o mierze 45 ∘ . Każda ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod tym samym kątem α takim, że tgα = 15 8 . Oblicz odległość spodka wysokości tego ostrosłupa od jego ściany bocznej SAD .

Ukryj Podobne zadania

Podstawą ostrosłupa czworokątnego ABCDS jest trapez ABCD (AB ∥ CD ). Ramiona tego trapezu mają długości |AD | = 10 i |BC | = 16 , a miara kąta ABC jest równa 30∘ . Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α , taki, że tg α = 9 2 . Oblicz objętość tego ostrosłupa.

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 2, a krawędź boczna długość 6.

Ukryj Podobne zadania

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź boczna ma długość 8, a krawędź podstawy ma długość 2.

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 4, a krawędź boczna długość 10.

W ostrosłupie prawidłowym czworokątnym ABCDS o podstawie ABCD wysokość jest równa 5, a kąt między sąsiednimi ścianami bocznymi ostrosłupa ma miarę 1 20∘ . Oblicz objętość tego ostrosłupa.

Dany jest ostrosłup prawidłowy czworokątny. Wysokość ściany bocznej tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 30∘ i ma długość równą 6 (zobacz rysunek).


ZINFO-FIGURE


Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Ukryj Podobne zadania

Dany jest ostrosłup prawidłowy czworokątny. Wysokość ściany bocznej tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 60∘ i ma długość równą 6 (zobacz rysunek).


ZINFO-FIGURE


Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Dany jest ostrosłup prawidłowy czworokątny. Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 3 0∘ , a krawędź podstawy ma długość równą  √ -- 6 3 . Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa.

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt ABC . Kąt nachylenia krawędzi bocznej AS do płaszczyzny podstawy ostrosłupa jest równy kątowi między krawędziami bocznymi AS i BS zawartymi w ścianie bocznej ASB tego ostrosłupa (zob. rysunek). Oblicz kosinus tego kąta.


PIC


Strona 9 z 11
spinner