Narysuj wykres funkcji .
/Szkoła średnia/Funkcje - wykresy/Wartość bezwzględna/Z wymierną
Na rysunku przedstawiony jest fragment wykresu funkcji określonej wzorem .
- Oblicz i .
- Narysuj wykres funkcji określonej wzorem .
- Podaj wszystkie wartości parametru , dla których równanie ma cztery rozwiązania.
Z podanego równania , gdzie i , wyznacz jako funkcję zmiennej . Narysuj wykres funkcji .
Dana jest funkcja .
- Naszkicuj wykres funkcji i na jego podstawie wyznacz liczbę rozwiązań równania w zależności od parametru .
- Liczby i są różnymi pierwiastkami równania . Oblicz .
Napisz wzór i naszkicuj wykres funkcji wiedząc, że funkcja każdej liczbie rzeczywistej przyporządkowuje najmniejszą wartość funkcji kwadratowej w przedziale .
Prosta równoległa do osi przecina wykres funkcji w dwóch punktach i . Wyznacz współrzędne punktów i jeżeli wiadomo, że razem z punktem tworzą trójkąt o polu 12.
Prosta równoległa do osi przecina wykres funkcji w dwóch punktach i . Wyznacz współrzędne punktów i jeżeli wiadomo, że razem z punktem tworzą trójkąt o polu 6.
Proste i są równoległe do osi i przecinają wykres funkcji odpowiednio w punktach i w ten sposób, że czworokąt jest trapezem o polu 6 i wysokości 2. Oblicz obwód trapezu .
Narysuj wykres funkcji , a następnie określ, dla jakich wartości parametru równanie nie ma rozwiązania.