Dany jest trójkąt o wymiarach . Oblicz obwód trójkąta podobnego w skali 5.
/Szkoła średnia/Geometria
Dany jest trójkąt o wymiarach . Oblicz obwód trójkąta podobnego w skali .
Oblicz objętość i pole powierzchni graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 6 cm i 8 cm, którego przekątna ściany bocznej tworzy z krawędzią podstawy kąt o mierze .
Wspólne styczne dwóch okręgów stycznych zewnętrznie przecinają się pod kątem . Wyznacz stosunek długości promieni tych okręgów.
Do dwóch stycznych zewnętrznie okręgów poprowadzono dwie wspólne styczne: jedną zewnętrzną i jedną wewnętrzną. Proste te przecinają się pod kątem . Wyznacz stosunek długości promieni tych okręgów.
Znajdź równanie okręgu stycznego do prostej i do prostej w punkcie .
Ramię trapezu równoramiennego ma długość . Przekątne w tym trapezie są prostopadłe, a punkt ich przecięcia dzieli je w stosunku 2:3. Oblicz pole tego trapezu.
Dla dowolnej liczby , prosta przecina hiperbolę w punktach i . Uzasadnij, że .
Dany jest prostokąt o polu 12, w którym długość przekątnej jest liczbą z przedziału . Wykaż, że obwód tego prostokąta jest liczbą z przedziału .
Na bokach i rombu wybrano odpowiednio punkty i tak, że . Pole pięciokąta jest 17 razy większe niż pole trójkąta . Punkt jest punktem wspólnym odcinka i przekątnej . Oblicz Oblicz .
Przekątna sześcianu ma długość 9. Oblicz pole powierzchni całkowitej tego sześcianu.
Na bokach , i kwadratu wybrano punkty , i ten sposób, że , , oraz .
- Uzasadnij, że trójkąt jest prostokątny.
- Oblicz tangensy kątów ostrych trójkąta .
Określ wzajemne położenie prostych i o równaniach
Na bokach i trójkąta wybrano punkty takie, że
Wyznacz wartość , dla której stosunek pola trójkąta do pola trójkąta jest najmniejszy.
Pole rombu jest równe 120. Gdyby zwiększyć długości jego przekątnych odpowiednio o 2 i 5 to pole wzrosłoby o 55. Oblicz obwód rombu. Podaj wszystkie możliwe odpowiedzi.
W trójkącie równobocznym połączono środki wysokości otrzymując trójkąt . Oblicz stosunek pól trójkątów i .
Współrzędne przeciwległych wierzchołków prostokąta są równe . Wyznacz współrzędne pozostałych wierzchołków prostokąta wiedząc, że wierzchołek leży na prostej .
Wykaż, że w sześcianie, odległość krawędzi od nieprzecinającej się z nią przekątnej sześcianu jest równa połowie długości przekątnej ściany.
Przez środek jednej krawędzi podstawy sześcianu, koniec przeciwległej krawędzi tej podstawy oraz środek krawędzi bocznej, poprowadzono płaszczyznę. Opisz figurę, którą otrzymamy w wyniku tego przekroju. Rozważ 2 przypadki.
Prosta o równaniu zawiera jedną z dwusiecznych kątów wewnętrznych trójkąta , w którym i . Oblicz pole tego trójkąta.
Suma długości krawędzi graniastosłupa prawidłowego czworokątnego jest równa 16. Dla jakiej długości krawędzi podstawy pole powierzchni całkowitej tego graniastosłupa będzie największe?
Suma krawędzi graniastosłupa prawidłowego trójkątnego jest równa 3. Dla jakiej długości krawędzi podstawy pole powierzchni całkowitej tego graniastosłupa będzie największe?
Dane są punkty i . Odcinek jest obrazem odcinka w jednokładności o skali dodatniej i środku , jak i w jednokładności o skali ujemnej i środku . Oblicz współrzędne punktów i .