Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe

Wyszukiwanie zadań

Dane są dwie funkcje liniowe określone wzorami f (x) = 3x + 5, g(x) = ax− 1, a ⁄= 0 . Funkcje te mają wspólne miejsce zerowe. Wynika stąd, że
A) a = 53 B) a = − 53 C) a = 3 5 D) a = − 3 5

Ukryj Podobne zadania

Dane są dwie funkcje liniowe określone wzorami f (x) = 5x + 3, g(x) = ax− 1, a ⁄= 0 . Funkcje te mają wspólne miejsce zerowe. Wynika stąd, że
A) a = 53 B) a = − 53 C) a = 3 5 D) a = − 3 5

Funkcja liniowa f określona wzorem f(x) = 3x + b ma takie samo miejsce zerowe, jakie ma funkcja liniowa g(x) = − 2x+ 3 . Stąd wynika, że
A) b = − 3 B) b = − 9 2 C)  3 b = 2 D)  3 b = − 2

Dane są dwie funkcje liniowe określone wzorami f (x) = 3x + 5, g(x) = ax+ 1, a ⁄= 0 . Funkcje te mają wspólne miejsce zerowe. Wynika stąd, że
A) a = 53 B) a = − 53 C) a = 3 5 D) a = − 3 5

Funkcje liniowe f i g określone wzorami f(x) = −4x − 12 i g (x ) = − 2x + k − 3 mają wspólne miejsce zerowe. Stąd wynika, że
A) k = − 6 B) k = − 3 C) k = 3 D) k = 6

Funkcja liniowa f określona wzorem f(x) = 2x + b ma takie samo miejsce zerowe, jakie ma funkcja liniowa g(x) = − 3x+ 4 . Stąd wynika, że
A) b = 4 B) b = − 3 2 C)  8 b = − 3 D)  4 b = 3

Liczba a jest odwrotnością liczby  √ -- 2 + 3 , zaś b jest liczbą przeciwną do liczby  √ -- 2− 3 . Różnica b− a jest wówczas równa:
A) − 4 B)  √ -- 2 3 − 4 C)  √ -- 4 + 2 3 D) 0

Liczba punktów wspólnych wykresu funkcji wymiernej  x2−1 f(x ) = x z osią Oy jest równa
A) 3 B) 2 C) 1 D) 0

Ukryj Podobne zadania

Liczba punktów wspólnych wykresu funkcji wymiernej  x2−1 f(x ) = x− 2 z osią Oy jest równa
A) 3 B) 2 C) 1 D) 0

W pewnej grupie 100 uczniów przeprowadzono sondaż dotyczący dziennego czasu korzystania z komputera. Wyniki sondażu przedstawia poniższy diagram. Na osi poziomej podano – wyrażony w godzinach – dzienny czas korzystania przez ucznia z komputera. Na osi pionowej przedstawiono liczbę uczniów, którzy dziennie korzystają z komputera przez określony czas.


ZINFO-FIGURE


Dominanta dziennego czasu korzystania przez ucznia z komputera jest równa
A) 2,25 godziny B) 2,50 godziny C) 2,75 godziny D) 1,50 godziny

Ukryj Podobne zadania

W pewnej grupie 100 uczniów przeprowadzono sondaż dotyczący dziennego czasu korzystania z komputera. Wyniki sondażu przedstawia poniższy diagram. Na osi poziomej podano – wyrażony w godzinach – dzienny czas korzystania przez ucznia z komputera. Na osi pionowej przedstawiono liczbę uczniów, którzy dziennie korzystają z komputera przez określony czas.


PIC


Dominanta dziennego czasu korzystania przez ucznia z komputera jest równa
A) 2,25 godziny B) 2,50 godziny C) 1,5 godziny D) 2 godziny

Ukryj Podobne zadania

Cena długopisu po 3 podwyżkach o 50% i dwóch obniżkach o 20% wzrosła o 2,32 zł. Nowa cena długopisu jest równa
A) 3,42 zł B) 2 zł C) 4,32 zł D) 2,34 zł

Ukryj Podobne zadania

Cena długopisu po 2 podwyżkach o 20% i trzech obniżkach o 50% zmalała o 2,87 zł. Nowa cena długopisu jest równa
A) 1,26 zł B) 0,63 zł C) 3,50 zł D) 6,37 zł

Cena telewizora po 3 podwyżkach o 25% i dwóch obniżkach o 20% wzrosła o 1200 zł. Nowa cena telewizora jest równa
A) 4800 zł B) 5760 zł C) 6000 zł D) 4500 zł

Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f . Na wykresie tej funkcji leżą punkty A = (3,− 1) i  ( ) B = 0, 54 .


PIC


Obrazem prostej AB przy obrocie o kąt 9 0∘ wokół punktu A jest wykres funkcji g określonej wzorem
A) g(x ) = 3x − 13 4 4 B) g (x) = x − 4 C)  4 g(x ) = 3x − 5 D) g(x) = −x + 2

Jeśli liczbę x powiększymy o 3, to otrzymamy 9 5 tej liczby. Wynika stąd, że
A) x = 145 B) x = 195 C) x = 9 5 D) x = 4

Ukryj Podobne zadania

Jeśli liczbę x powiększymy o 4, to otrzymamy 12- 5 tej liczby. Wynika stąd, że
A) x = 157 B) x = 270 C) x = 20 7 D) x = 5- 17

Jeśli liczbę x powiększymy o 5, to otrzymamy 9 4 tej liczby. Wynika stąd, że
A) x = 145 B) x = 195 C) x = 9 5 D) x = 4

Na rysunku przedstawiono okrąg wpisany w trójkąt.


PIC


Miara kąta α jest równa
A) 105 ∘ B) 75∘ C) 12 0∘ D) 60 ∘

Ukryj Podobne zadania

Okrąg o środku w punkcie O jest wpisany w trójkąt ABC . Wiadomo, że |AB | = |AC | i |∡BOC | = 110 ∘ (zobacz rysunek).


PIC


Miara kąta BAC jest równa
A) 20∘ B) 3 0∘ C) 40∘ D) 50∘

Okrąg o środku w punkcie O jest wpisany w trójkąt ABC . Wiadomo, że |AB | = |AC | i |∡BOC | = 100 ∘ (zobacz rysunek).


PIC


Miara kąta BAC jest równa
A) 20∘ B) 3 0∘ C) 40∘ D) 50∘

Odległość między środkami okręgów o równaniach  2 2 (x − 4) + (y + 3 ) = 16 oraz (x + 3)2 + (y − 2)2 = 9 jest równa
A) √ --- 74 B) √ --- 26 C) 5√ 2- D) √ 2-

Ukryj Podobne zadania

Liczba lo g2(log93 ) jest równa
A) 1 B) − 1 C) 2 D) − 2

Ukryj Podobne zadania

Liczba lo g3(log82 ) jest równa
A) 1 B) 2 C) − 1 D) − 2

Liczb naturalnych siedmiocyfrowych, w zapisie których występuje dokładnie raz cyfra 7, dokładnie dwa razy cyfra 4, nie występuje cyfra zero, a pozostałe cyfry są między sobą różne jest
A) (7)⋅ (6) ⋅7 ⋅6⋅5 ⋅4 1 2 B) (7) ⋅(6)+ 7 ⋅6 ⋅5 ⋅4 1 2 C)  7 6 7 (1)⋅(2) ⋅(4) D)  7 6 4 (1)⋅(2) ⋅7

Wykres funkcji  2 f(x ) = − 3(x− 2) + 5 przesunięto o 3 jednostki w lewo i 2 jednostki w górę. W wyniku tej operacji otrzymano wykres funkcji
A) y = − 3 (x − 5)2 + 2 B) y = − 3(x + 1)2 + 2
C)  2 y = − 3(x − 5 ) + 7 D)  2 y = − 3(x + 1) + 7

Ukryj Podobne zadania

Wykres funkcji  2 f(x ) = x + x+ 1 przesunięto o 2 jednostki w prawo i 1 jednostkę w górę. W wyniku tej operacji otrzymano wykres funkcji
A) y = x2 + 3x+ 4 B) y = x 2 − 3x + 2
C)  2 y = x − 3x + 4 D)  2 y = x + 3x+ 2

Przybliżenie dziesiętne liczby  0,1 10 z dokładnością do pięciu miejsc po przecinku jest równe 1,25893. Przybliżeniem dziesiętnym liczby 10 −0,9 z dokładnością do 0,001 jest liczba
A) 0,126 B) 1,259 C) 12,589 D) 7,943

Ukryj Podobne zadania

Przybliżenie dziesiętne liczby  1,1 10 z dokładnością do pięciu miejsc po przecinku jest równe 12,58925. Przybliżeniem dziesiętnym liczby 1 00,1 z dokładnością do 0,001 jest liczba
A) 0,126 B) 1,259 C) 125,892 D) 7,943

Przybliżenie dziesiętne liczby  0,2 10 z dokładnością do pięciu miejsc po przecinku jest równe 1,58489. Przybliżeniem dziesiętnym liczby 10 −0,8 z dokładnością do 0,001 jest liczba
A) 1,1585 B) 0,158 C) 15,849 D) 0,159

Przybliżenie dziesiętne liczby  0,3 10 z dokładnością do czterech miejsc po przecinku jest równe 1,9953. Przybliżeniem dziesiętnym liczby 10 −0,7 z dokładnością do 0,01 jest liczba
A) 0,02 B) 19,95 C) 0,19 D) 0,2

Przybliżenie liczby  − 0,4 1,3 ⋅10 jest równe 0,5175393. Przybliżeniem liczby 39 ⋅100,6 z dokładnością do 3 miejsca po przecinku jest liczba
A) 15,526 B) 1552,618 C) 155,262 D) 1552,617

Przybliżenie liczby  − 1,4 1,8 ⋅10 jest równe 0,07165929. Przybliżeniem liczby 54 ⋅100,6 z dokładnością do 3 miejsca po przecinku jest liczba
A) 21,499 B) 214,978 C) 2149,779 D) 71,659

Na rysunku przedstawiono fragment wykresu funkcji y = f(x) , który jest złożony z dwóch półprostych AD i CE oraz dwóch odcinków AB i BC , gdzie A = (− 1,0 ) , B = (1,2) , C = (3 ,0 ) , D = (− 4,3) , E = (6,3) .


PIC


Wzór funkcji f to
A) |x + 1|+ |x − 1 | B) ||x − 1 |− 2| C) ||x− 1|+ 2 | D) |x − 1|+ 2

Ukryj Podobne zadania

Na rysunku przedstawiono fragment wykresu funkcji y = f(x) , który jest złożony z dwóch półprostych AC i BD oraz odcinka AB , gdzie A = (− 1,2) , B = (1,2) , C = (− 3,6) , D = (3,6) .


PIC


Wzór funkcji f to
A) |x + 1|+ |x − 1 | B) ||x − 1 |− 1| C) ||x− 1|+ 1 | D) |x + 1|+ 1

Proste o równaniach y = 2x + 3 oraz  1 y = − 3 x+ 2
A) są równoległe i różne B) są prostopadłe
C) przecinają się pod kątem innym niż prosty D) pokrywają się

Ukryj Podobne zadania

Równania 3x − y − 4 = 0 oraz 0 ,6x − 0,2y = − 0,8 opisują proste w układzie współrzędnych, które
A) przecianją się pod kątem prostym
B) pokrywają się
C) są równoległe i nie pokrywają się
D) przecinają się pod innym kątem niż  ∘ 90

Równania 5x − y − 4 = 0 oraz 0 ,2x+ y = 0,8 opisują proste w układzie współrzędnych, które
A) przecianją się pod kątem prostym
B) pokrywają się
C) są równoległe i nie pokrywają się
D) przecinają się pod innym kątem niż  ∘ 90

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) , dane są:
– prosta k o równaniu y = 12x+ 5
– prosta l o równaniu y− 1 = − 2x .
Proste k i l
A) pokrywają się. B) nie mają punktów wspólnych.
C) są prostopadłe. D) przecinają się pod kątem 30∘ .

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) , dane są:
– prosta k o równaniu y = 12x+ 5
– prosta l o równaniu y− 1 = 0,5x .
Proste k i l
A) pokrywają się. B) nie mają punktów wspólnych.
C) są prostopadłe. D) przecinają się pod kątem 30∘ .

Proste o równaniach 5x + 3y+ 3 = 0 oraz 9x − 15y + 1 = 0
A) są równoległe i różne B) są prostopadłe
C) przecinają się pod kątem innym niż prosty D) pokrywają się

Proste o równaniach y = 3x − 1 oraz  1 y = 3x+ 1
A) pokrywają się B) przecinają się pod kątem innym niż prosty
C) są prostopadłe D) są równoległe i różne

Równania  3 5 y = − 4x+ 4 oraz  4 y = − 3 opisują dwie proste
A) przecinające się pod kątem o mierze 90∘ .
B) pokrywające się
C) przecinające się pod kątem różnym od 9 0∘ .
D) równoległe i różne.

Równania y = − 6 ,2 5x+ 0,16 oraz y = − 6,2 5+ 0 ,16x opisują dwie proste
A) przecinające się pod kątem o mierze 90∘ .
B) pokrywające się.
C) przecinające się pod kątem różnym od  ∘ 9 0 .
D) równoległe i różne.

Równania 3x − y − 4 = 0 oraz 0 ,6x − 0,2y = 0,8 opisują proste w układzie współrzędnych, które
A) przecianją się pod kątem prostym
B) pokrywają się
C) są równoległe i nie pokrywają się
D) przecinają się pod innym kątem niż  ∘ 90

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) , dane są proste k oraz l o równaniach

k : y = 1-x− 1 3 l : y = 3x − 1.

Proste k oraz l
A) nie mają punktów wspólnych. B) są prostopadłe.
C) przecinają się w punkcie P = (0,− 1) . D) pokrywają się.

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) , dane są proste k oraz l o równaniach

k : y = 1-x− 1 3 l : y = − 3x + 6.

Proste k oraz l
A) nie mają punktów wspólnych. B) są prostopadłe.
C) przecinają się w punkcie P = (0,− 1) . D) pokrywają się.

Trójka liczb (x ,y,z) = (− 1,− 1,− 2) jest rozwiązaniem układu równań ( |{ x3 − y2 + z = − 4 2 2 3 |( x − ay + z = − 4 x− 5y3 − 2z2 = − 4 gdy
A) a = − 3 B) a = − 2 C) a = 2 D) a = 3

Ukryj Podobne zadania

Trójka liczb (x ,y,z) = (2,− 1,− 1) jest rozwiązaniem układu równań ( |{ x2 − y3 + z = 4 2 3 2 |( x + ay + z = 2 x3 + 5y − 2z2 = 1 gdy
A) a = − 3 B) a = − 2 C) a = 2 D) a = 3

O liczbie x wiadomo, że  1 lo g4x = 3 . Zatem
A) x4 = 2 3 B) x6 = 24 C) x3 = 34 D) x4 = 43

Ukryj Podobne zadania

O liczbie x wiadomo, że  1 lo g3x = 4 . Zatem
A) x8 = 3 2 B) x6 = 24 C) x3 = 34 D) x4 = 32

W ciągu geometrycznym (an) o wyrazach dodatnich spełnione są warunki: a2 ⋅a8 = 784 oraz a3 = 7 . Iloraz tego ciąg jest równy
A) 4 B) 2 C) 14 D) 1 2

Strona 181 z 184
spinner