Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe

Wyszukiwanie zadań

Cena towaru bez podatku VAT wynosi 180 zł. Ten sam towar wraz z podatkiem VAT i 5% rabatem handlowym kosztuje 184,68 zł. Jaką stawką VAT opodatkowano ten towar?
A) 5% B) 8% C) 23% D) 108%

Ukryj Podobne zadania

Cena towaru bez podatku VAT wynosi 240 zł. Ten sam towar wraz z podatkiem VAT i 8% rabatem handlowym kosztuje 231,84 zł. Jaką stawką VAT opodatkowano ten towar?
A) 5% B) 8% C) 23% D) 105%

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miary α i β zaznaczonych kątów ACB i ASB spełniają warunek β − α = 45∘ . Wynika stąd, że
A) α = 315∘ B) α = 225∘ C)  ∘ α = 1 50 D)  ∘ α = 105

Układ liczb  ( 1 1 ) (x ,y,z) = 2,− 3,− 1 jest rozwiązaniem układu równań

( 2 |{ a x − 3y + az = 1 −ax + (a2 + 2)y − 2z = − 1 |( 3 6x − (a + 1)y + 5z = 1,

dla
A) a = 2 B) a = 53 C) a = − 4 3 D) a = −2

W pewnej klasie stosunek liczby dziewcząt do liczby chłopców jest równy 4:5. Losujemy jedną osobę z tej klasy. Prawdopodobieństwo tego, że będzie to dziewczyna, jest równe
A) 4 5 B) 4 9 C) 1 4 D) 1 9

Pewne przedsiębiorstwo postanowiło przyznać każdemu pracownikowi losowy 5-cyfrowy identyfikator, przy czym ustalono, że w identyfikatorze nie może występować cyfra 0. Prawdopodobieństwo p otrzymania identyfikatora, w którym każde dwie cyfry są różne spełnia warunek
A) p > 0,25 B) p < 0,15 C) p = 0 ,15 D) p = 0,24

Magda wydała na książkę połowę kwoty otrzymanej od mamy, a za 40% tego, co jej zostało, kupiła bilet do kina. Ile procent kwoty otrzymanej od mamy pozostało Magdzie?
A) 30% B) 60% C) 10% D) 20%

Ukryj Podobne zadania

Andrzej połowę kwoty otrzymanej od taty przeznaczył na nową kurtkę, a 20% tego, co mu pozostało przeznaczył na bilet do kina. Ile procent kwoty otrzymanej od taty pozostało Andrzejowi?
A) 30% B) 80% C) 40% D) 20%

Suma długości wszystkich przekątnych sześcianu jest równa 24. Pole powierzchni całkowitej tego sześcianu jest równe
A) 144 B)  √ -- 1 2 3 C) 36 D) 72

Suma dwóch początkowych wyrazów ciągu arytmetycznego (an) wynosi 5, a trzeci wyraz jest równy 7. Wówczas
A) a5 = 1 1 B) a5 = 12 C) a = 13 5 D) a = 14 5

Ukryj Podobne zadania

Suma dwóch początkowych wyrazów ciągu arytmetycznego (an) wynosi 7, a trzeci wyraz jest równy 5. Wówczas
A) a5 = 7 B) a5 = 9 C) a = 3 5 D) a = 1 5

Wyrażenie (a+ b+ c − d)(a + b − c + d) może być zapisane w postaci
A) (a + b)2 − (c+ d)2 B) (a+ b)2 − (c − d)2
C)  2 2 (a− b) − (c− d ) D)  2 (a + b− c− d)

Ukryj Podobne zadania

Wyrażenie (a− b+ c + d)(a + b − c + d) może być zapisane w postaci
A) (a + d)2 − (c+ b)2 B) (a− d)2 − (c− b)2
C)  2 2 (a+ d) − (c− b) D)  2 (a − d − c+ b)

Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, w którym wysokość jest 3 razy dłuższa od krawędzi podstawy, jest równe 140. Zatem krawędź podstawy tego graniastosłupa jest równa
A) √ --- 10 B)  √ --- 3 10 C) √ --- 42 D)  √ --- 3 42

Ukryj Podobne zadania

Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, w którym wysokość jest 3 razy krótsza od krawędzi podstawy, jest równe 60. Zatem krawędź podstawy tego graniastosłupa jest równa
A)  √ -- 9 3 B)  √ -- 3 2 C)  √ -- 10 2 D)  √ -- 2 3

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f (x) = ax2 + bx + c , której miejsca zerowe to: − 3 i 1.


PIC


Współczynnik c we wzorze funkcji f jest równy
A) 1 B) 2 C) 3 D) 4

Ukryj Podobne zadania

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f (x) = ax2 + bx + c , której miejsca zerowe to: − 4 i 2.


PIC


Współczynnik c we wzorze funkcji f jest równy
A) − 9 B) − 8 C) 4 D) − 2

Ukryj Podobne zadania

Równanie 2x+1- x = 3x
A) ma dwa rozwiązania: x = − 13,x = 1 B) ma dwa rozwiązania: x = 1,x = 1 3
C) nie ma żadnego rozwiązania D) ma tylko jedno rozwiązanie x = 1

Ukryj Podobne zadania

Rozwiązaniem równania −-2x+-6 x− 3 = x jest
A) x1 = − 2 B) x1 = − 2, x2 = 3 C) x1 = − 3, x2 = 2 D) x1 = 3

Równanie  --1-- x + 9x+ 6 = 0
A) ma dokładnie dwa rozwiązania rzeczywiste.
B) ma dokładnie trzy rozwiązania rzeczywiste.
C) ma dokładnie jedno rozwiązanie rzeczywiste.
D) nie ma rozwiązań.

Równanie  --1-- x − 2x+ 1 = 0
A) ma dokładnie dwa rozwiązania rzeczywiste.
B) ma dokładnie trzy rozwiązania rzeczywiste.
C) ma dokładnie jedno rozwiązanie rzeczywiste.
D) nie ma rozwiązań.

Równanie 3x+1- 4x = x
A) ma dwa rozwiązania: x = 14,x = 1 B) ma dwa rozwiązania: x = − 1,x = 1 4
C) ma dwa rozwiązania:  1 x = − 2,x = 2 D) ma tylko jedno rozwiązanie x = 1

Ile jest wszystkich liczb pięciocyfrowych, większych 43080, utworzonych wyłącznie z cyfr 1, 2, 3, 4 przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?
A) 48 B) 15 C) 128 D) 192

Ukryj Podobne zadania

Ile jest wszystkich liczb pięciocyfrowych, większych 53079, utworzonych wyłącznie z cyfr 2, 3, 4, 5 przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane?
A) 48 B) 15 C) 128 D) 192

Środkiem okręgu jest punkt S = (5,4 ) . Do okręgu należy punkt O = (2,0) . Równanie tego okręgu to
A) (x + 5)2 + (y + 4)2 = 2 5 B) (x − 5)2 + (y − 4)2 = 2 5
C)  2 2 (x − 5) + (y− 4) = 5 D)  2 2 x + y = 25

Ukryj Podobne zadania

Środkiem okręgu jest punkt S = (4,− 1) . Do okręgu należy punkt O = (0,− 4) . Równanie tego okręgu to
A) (x + 4)2 + (y − 1)2 = 5 B) (x + 4)2 + (y − 1)2 = 2 5
C)  2 2 (x − 1) + (y + 4) = 5 D)  2 2 (x − 4) + (y + 1) = 2 5

Środkiem okręgu jest punkt S = (− 1,4) . Do okręgu należy punkt O = (2,0) . Równanie tego okręgu to
A) (x + 1)2 + (y − 4)2 = 2 5 B) (x − 1)2 + (y + 4)2 = 2 5
C)  2 2 (x − 1) + (y − 4) = 5 D)  2 2 (x + 4) + (y − 1) = 5

Punkt S = (− 2,4 ) jest środkiem okręgu. Na okręgu leży punkt P = (1,0) . Równanie tego okręgu ma postać
A) (x − 2)2 + (y + 4)2 = 2 5 B) (x + 2)2 + (y − 4)2 = 5
C)  2 2 (x − 2) + (y + 4) = 5 D)  2 2 (x + 2) + (y − 4) = 2 5

Dane są dwie proste równoległe k : y = x oraz l : y = x− 2 . Odległość między tymi prostymi jest równa:
A) 2 B) 1,5 C) √ -- 2 D) 1

Ukryj Podobne zadania

Odległość między prostymi y = −x + 1 i y = −x − 1 jest równa
A) 2 B)  √ -- 2 2 C) 1 D) √ -- 2

Dane są dwie proste równoległe k : y = x oraz l : y = x+ 4 . Odległość między tymi prostymi jest równa:
A) 4 B) √ -- 8 C) √ -- 2 D) 3

Dane są dwie proste równoległe k : y = x+ 4 oraz l : y = x . Odległość między tymi prostymi jest równa:
A) 2 B)  √ -- 2 2 C) √ -- 2 D) 4

Ukryj Podobne zadania

W kartezjańskim układzie współrzędnych (x,y) przedstawiono fragment wykresu funkcji kwadratowej f (zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f , oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.


ZINFO-FIGURE


Dokończ zdanie. Wybierz dwie właściwe odpowiedzi spośród podanych.
Wzór funkcji f można przedstawić w postaci:
A)  1 f (x) = 2(x − 2 )(x − 6) B) f (x) = 12(x − 4)2 − 2
C) f(x ) = 2(x − 2)(x − 6) D)  1 2 f (x) = 2(x + 4) − 2

E) f(x) = 2(x+ 2)(x + 6) F) f (x) = 2(x + 4)2 − 2

Ukryj Podobne zadania

W kartezjańskim układzie współrzędnych (x,y) przedstawiono fragment wykresu funkcji kwadratowej f (zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f , oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.


ZINFO-FIGURE


Dokończ zdanie. Wybierz dwie właściwe odpowiedzi spośród podanych.
Wzór funkcji f można przedstawić w postaci:
A)  1 f (x) = 2(x − 2 )(x + 6) B) f (x) = 12(x + 2)2 − 8
C) f(x ) = 1(x + 2)(x − 6 ) 2 D)  1 2 f (x) = 2(x − 2) − 8

E) f(x) = 2(x+ 2)(x − 6) F) f (x) = 2(x + 2)2 − 8

W kartezjańskim układzie współrzędnych (x,y) przedstawiono fragment wykresu funkcji kwadratowej f (zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f , oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.


ZINFO-FIGURE


Dokończ zdanie. Wybierz dwie właściwe odpowiedzi spośród podanych.
Wzór funkcji f można przedstawić w postaci:
A)  1 f (x) = − 3(x + 9)(x − 3 ) B) f (x) = − 13(x − 9)(x + 3 )
C) − 1x2 + 2x + 9 3 D) f(x) = − 1x2 − 2x + 9 3

E)  1 − 3(x − 3)2 + 12 F)  1 − 3(x + 3)2 − 12

Granica  x+-2 lxi→m1x− 1
A) jest równa + ∞ B) nie istnieje C) jest liczbą rzeczywistą D) jest równa − ∞

Ukryj Podobne zadania

Granica  x+-4 lxi→m2x− 2
A) jest liczbą rzeczywistą B) jest równa − ∞ C) nie istnieje D) jest równa + ∞

Granica  x−1- xl→im−2 x+2
A) jest równa − ∞ B) jest równa + ∞ C) jest liczbą rzeczywistą D) nie istnieje

Granica  x−2- xl→im−1 x+1
A) jest równa − ∞ B) jest liczbą rzeczywistą C) jest równa + ∞ D) nie istnieje

Granica  x+-2 lxi→m3x− 3
A) jest równa + ∞ B) jest równa − ∞ C) jest liczbą rzeczywistą D) nie istnieje

Granica  x+-4 lxi→m2x− 2
A) jest liczbą rzeczywistą B) jest równa − ∞ C) nie istnieje D) jest równa + ∞

Granica  x+-1 lxi→m2x− 2
A) jest równa − ∞ B) nie istnieje C) jest liczbą rzeczywistą D) jest równa + ∞

Granica  x−3- xl→im−2 x+2
A) nie istnieje B) jest równa − ∞ C) jest liczbą rzeczywistą D) jest równa + ∞

Strona 9 z 184
spinner