Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Funkcje - wykresy/Liniowy

Wyszukiwanie zadań

Punkt (− 1,2) należy do wykresu funkcji  √ -- f(x) = (a+ 3)(x− 1)+ 2 . Wynika stąd, że
A) f(− 1) = f(2) B) f(2 ) = 1 C) f(− 1) = 0 D) f(2 ) = − 1

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 43x + 1 B) y = − 34x+ 1 C) y = − 3x + 1 D) y = 4x + 1

Ukryj Podobne zadania

Wskaż wzór funkcji, której wykres przedstawiono na poniższym rysunku.


PIC


A) y = 12x − 1 B) y = 12x + 1 C) y = − 1x− 1 2 D) y = − 1x + 1 2

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 43x + 1 B) y = − 34x+ 1 C) y = − 3x + 1 D) y = 4x + 1

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 2x + 3 B) y = − 2x + 3 C) y = − 3x+ 2 2 D) y = − 2x + 2 3

Wskaż wzór funkcji, której wykres przedstawiono na poniższym rysunku.


PIC


A) y = 12x − 1 B) y = 12x + 1 C) y = − 1x− 1 2 D) y = − 1x + 1 2

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 43x + 1 B) y = − 34x+ 1 C) y = − 3x + 1 D) y = 4x + 1

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 2x + 3 B) y = − 2x + 3 C) y = 3x+ 2 2 D) y = − 2x + 2 3

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 2x + 3 B) y = − 2x + 3 C) y = − 3x+ 2 2 D) y = − 2x + 2 3

Na rysunku przedstawiono wykres funkcji y = f(x) .


PIC


Wzór opisujący funkcję y = f(x) ma postać:
A) y = − 3x− 2 B) y = − 2x− 2 C) y = 2x − 2 D) y = 3x − 2

Wskaż wzór funkcji, której wykres przedstawiono na poniższym rysunku.


PIC


A) y = 12x − 1 B) y = 12x + 1 C) y = − 1x− 1 2 D) y = − 1x + 1 2

Do wykresu funkcji liniowej y = ax+ b należą punkty A = (−3 ,−1 0),B = (2,5 ) . Wynika stąd, że
A) a = − 3 ,b = − 1 B) a = − 3,b = 1 C) a = 3,b = 1 D) a = 3 ,b = − 1

Ukryj Podobne zadania

Jeżeli wiadomo, że punkty A = (− 1;− 8) i B = (3 ;4) należą do wykresu funkcji liniowej, to ta funkcja opisana jest wzorem
A) y = 3x − 5 B) y = − 3x − 5 C) y = 3x + 5 D) y = −3x + 5

Do wykresu funkcji liniowej y = ax+ b należą punkty A = (3,− 8),B = (− 2,7) . Wynika stąd, że
A) a = − 3 ,b = − 1 B) a = − 3,b = 1 C) a = 3,b = 1 D) a = 3 ,b = − 1

Do wykresu funkcji liniowej y = ax+ b należą punkty A = (−3 ,7),B = (2,− 8) . Wynika stąd, że
A) a = − 3 ,b = − 2 B) a = − 3,b = 2 C) a = 3,b = 2 D) a = 3 ,b = − 2

Do wykresu funkcji liniowej należą punkty A = (− 1,− 5) , B = (− 3,7) , zatem funkcja liniowa ma wzór
A) f(x ) = − 16x − 5 B) f (x) = − 12x − 5 12 C) f(x ) = − 6x− 11 D) f (x) = − 2x + 7

Funkcja liniowa f jest określona wzorem f (x) = −x + 1 . Funkcja g jest liniowa. W kartezjańskim układzie współrzędnych (x,y) wykres funkcji g przechodzi przez punkt P = (0,− 1) i jest prostopadły do wykresu funkcji f . Wzorem funkcji g jest
A) g(x ) = x+ 1 B) g(x) = −x − 1 C) g(x ) = −x + 1 D) g (x) = x − 1

Ukryj Podobne zadania

Funkcja liniowa f jest określona wzorem f (x) = − 2x + 1 . Funkcja g jest liniowa. W kartezjańskim układzie współrzędnych (x,y) wykres funkcji g przechodzi przez punkt P = (− 3,2) i jest prostopadły do wykresu funkcji f . Wzorem funkcji g jest
A) g(x ) = − 2x − 4 B) g(x ) = − 2x + 8 C)  1 1 g(x) = 2x+ 2 D)  1 7 g(x) = 2 x+ 2

Podstawa CD trapezu równoramiennego ABCD , który nie jest równoległobokiem, ma równanie y = x+ 3 . Ponadto A = (− 2,− 4) i B = (7,5) . Oś symetrii tego trapezu ma równanie
A) g(x ) = x− 2 B) g(x) = −x + 3 C) g(x ) = −x − 6 D) g (x) = x + 2

Ukryj Podobne zadania

O funkcji liniowej f wiadomo, że f (2) = 3 oraz punkt P = (4,2) należy do jej wykresu. Wzór funkcji f to
A) f(x ) = 12x + 4 B) f(x) = − 12x + 4 C) f(x ) = − 1x − 4 2 D)  1 f (x) = 2x − 4

Do wykresu funkcji liniowej f należą punkty A = (4,− 3) i B = (− 1,− 13) . Funkcja f opisana jest wzorem
A) f(x ) = 2x − 11 B) f(x) = 2x + 1 1 C) f(x) = 1x + 1 2 D) f (x) = 1x − 5 2

Do wykresu funkcji liniowej f należą punkty A = (− 1 ,2 ) i B = (2,5) . Funkcja f ma wzór
A) f(x ) = −x + 3 B) f(x) = −x + 1 C) f(x ) = x+ 3 D) f(x) = −x + 7

Do wykresu funkcji liniowej f należą punkty A = (− 1,− 2) i B = (2,7) . Funkcja f ma wzór
A) f(x ) = 3x − 1 B) f (x) = − 3x − 5 C) f(x ) = 3x + 1 D) f (x) = − 3x − 2

O funkcji liniowej f wiadomo, że f (1) = 2 . Do wykresu tej funkcji należy punkt P = (−2 ,8) . Wzór funkcji f to
A) f(x ) = − 13x + 73 B) f(x) = − 12x + 7 C) f(x ) = − 3x + 7 D) f (x) = − 2x + 4

O funkcji liniowej f wiadomo, że f (1) = 2 . Do wykresu tej funkcji należy punkt P = (−2 ,3) . Wzór funkcji f to
A) f(x ) = − 13x + 73 B) f(x) = − 12x + 2 C) f(x ) = − 3x + 7 D) f (x) = − 2x + 4

Przez punkty (0 ,5) i (2,8) przechodzi wykres funkcji
A) y = 32x + 5 B) y = − 32x+ 5 C) y = − 3x+ 5 8 D) y = − 8x + 5 3

Przez punkty (0 ,5) i (2,2) przechodzi wykres funkcji
A) y = 32x + 5 B) y = − 32x+ 5 C) y = − 3x+ 5 8 D) y = − 8x + 5 3

Przez punkty (0 ,5) i (3,− 3) przechodzi wykres funkcji
A) y = 32x + 5 B) y = − 32x+ 5 C) y = − 3x+ 5 8 D) y = − 8x + 5 3

Do wykresu funkcji nie należy punkt A = (− 2,− 3) . Funkcja f może mieć wzór
A) f(x ) = 2x + 1 B) f (x) = − 3x − 9 C) f(x ) = − 2x − 6 D) f (x) = 3x + 3

Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f . Na wykresie tej funkcji leżą punkty A = (3,− 1) i  ( ) B = 0, 54 .


PIC


Obrazem prostej AB przy obrocie o kąt 9 0∘ wokół punktu A jest wykres funkcji g określonej wzorem
A) g(x ) = 3x − 13 4 4 B) g (x) = x − 4 C)  4 g(x ) = 3x − 5 D) g(x) = −x + 2

Gdy przesuniemy wykres funkcji f(x) = 3x − 2 o 3 jednostki w prawo i 2 jednostki w górę, to otrzymamy wykres funkcji opisanej wzorem
A) y = 3x − 9 B) y = 3x − 13 C) y = 3x + 9 D) y = 3x+ 5

Ukryj Podobne zadania

Aby otrzymać wykres funkcji y = 5(x + 1 )− 7 , należało wykres funkcji y = 5x przesunąć
A) o 1 jednostkę w lewo i 7 ku dołowi B) o 1 jednostkę w prawo i 7 ku górze
C) o 1 jednostkę w prawo i 7 ku dołowi D) o 1 jednostkę w lewo i 7 ku górze

Gdy przesuniemy wykres funkcji f(x) = 3x − 2 o 3 jednostki w lewo i 2 jednostki w dół, to otrzymamy wykres funkcji opisanej wzorem
A) y = 3x − 9 B) y = 3x − 13 C) y = 3x + 9 D) y = 3x+ 5

Strona 3 z 3
spinner