Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria/Okrąg i koło

Wyszukiwanie zadań
Ukryj Podobne zadania

Punkty A ,B,C i D leżą na okręgu o środku w punkcie O . Cięciwy DB i AC przecinają się w punkcie E , |∡ACB | = 55∘ oraz |∡AEB | = 140∘ (zobacz rysunek).


PIC


Miara kąta DAC jest równa
A) 45∘ B) 5 5∘ C) 70∘ D) 85∘

Kąt α na rysunku obok ma miarę


PIC


A) 70∘ B) 6 0∘ C) 50∘ D) 40∘

Punkty A ,B,C i D leżą na okręgu o środku w punkcie O . Cięciwy DB i AC przecinają się w punkcie E , |∡ACB | = 58∘ oraz |∡AEB | = 145∘ (zobacz rysunek).


PIC


Miara kąta DAC jest równa
A) 58∘ B) 8 7∘ C) 32∘ D) 85∘

Punkty A ,B,C ,D leżą na okręgu o środku O (zobacz rysunek). Miara zaznaczonego kąta α jest równa


PIC


A) 54,5∘ B) 31∘ C) 34 ∘ D) 27∘

Ukryj Podobne zadania

Punkty A ,B,C ,D leżą na okręgu o środku O (zobacz rysunek). Miara zaznaczonego kąta α jest równa


PIC


A) 54,5∘ B) 30∘ C) 34 ∘ D) 27∘

Punkty A ,B ,C i D leżą na okręgu o środku S . Miary kątów SBC , BCD , CDA są równe odpowiednio: |∡SBC | = 60∘ , |∡BCD | = 110∘ , |∡CDA | = 90∘ (zobacz rysunek).


PIC


Wynika stąd, że miara α kąta DAS jest równa
A) 25∘ B) 3 0∘ C) 35∘ D) 40∘

Ukryj Podobne zadania

Punkty A ,B ,C i D leżą na okręgu o środku S . Miary kątów SBC , BCD , CDA są równe odpowiednio: |∡SBC | = 50∘ , |∡BCD | = 105∘ , |∡CDA | = 90∘ (zobacz rysunek).


ZINFO-FIGURE


Wynika stąd, że miara α kąta DAS jest równa
A) 25∘ B) 3 0∘ C) 35∘ D) 40∘

Punkty A ,B ,C i D leżą na okręgu o środku S . Miary kątów SBC , BCD , SAD są równe odpowiednio: |∡SBC | = 50∘ , |∡BCD | = 1 10∘ , |∡SAD | = 40∘ (zobacz rysunek).


PIC


Wynika stąd, że miara α kąta ADC jest równa
A) 120 ∘ B) 110∘ C) 10 0∘ D) 11 5∘

Punkty A ,B,C ,D dzielą okrąg na 4 równe łuki. Miara zaznaczonego na rysunku kąta wpisanego ACD jest równa


PIC


A) 9 0∘ B) 60∘ C) 45 ∘ D) 30∘

Punkt O jest środkiem okręgu. Kąt środkowy AOD ma miarę


PIC


A) 150 ∘ B) 120∘ C) 11 5∘ D) 85 ∘

Ukryj Podobne zadania

Punkt O jest środkiem okręgu. Kąt środkowy AOD ma miarę


PIC


A) 130 ∘ B) 120∘ C) 11 5∘ D) 85 ∘

Punkty ABCD leżą na okręgu o środku S (zobacz rysunek). Miara kąta DBC jest równa


PIC


A) 59∘ B) 3 4∘ C) 28∘ D) 32∘

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 70∘ B) 110∘ C) 14 0∘ D) 21 0∘

Ukryj Podobne zadania

Punkt O jest środkiem okręgu. Kąt wpisany α przedstawiony na rysunku ma miarę:


PIC


A) 160 ∘ B) 80∘ C) 10 0∘ D) 70 ∘

Miara kąta α (patrz rysunek obok) jest równa


PIC


A) 45∘ B) 5 0∘ C) 55∘ D) 60∘

Na trójkącie ABC opisano okrąg i poprowadzono styczną do okręgu w punkcie A (zobacz rysunek obok).


PIC


Jeżeli |∡ABC | = 75∘ i kąt dopisany α jest równy 50∘ , to kąt CAB ma miarę:
A) 40∘ B) 4 5∘ C) 50∘ D)  ∘ 55

Czworokąt ABCD jest wpisany w okrąg o środku S . Bok AD jest średnicą tego okręgu, a miara kąta BDC jest równa 2 0∘ (zobacz rysunek).


PIC


Wtedy miara kąta BSC jest równa
A) 10∘ B) 2 0∘ C) 30∘ D) 40∘

Ukryj Podobne zadania

Czworokąt ABCD jest wpisany w okrąg o środku S . Bok AD jest średnicą tego okręgu, a miara kąta BDC jest równa 3 0∘ (zobacz rysunek).


PIC


Wtedy miara kąta BSC jest równa
A) 40∘ B) 3 0∘ C) 60∘ D) 50∘

Cięciwy AB i CD okręgu o środku O przecinają się w punkcie P i tworzą trójkąty AP C i BP D .


PIC


Trójkąty AP C i BP D

A) podobne,B) przystające,

ponieważ trójkąty te mają równe

1) pola,2) miary kątów,3) długości boków,

Odcinek AB jest średnicą okręgu (rysunek).


PIC


Miara kąta α jest równa
A) 58∘ B) 5 6∘ C) 60∘ D) 116∘

Strona 7 z 7
spinner