Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta k jest styczna do okręgu o promieniu 3 w punkcie A i jest styczna do okręgu o promieniu 4 w punkcie B (zobacz rysunek).


PIC


Długość odcinka AB jest równa
A)  √ -- 4 3 B) 7 C) 6 D) 3√ 4-

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miary α i β zaznaczonych kątów ACB i ASB spełniają warunek β − α = 45∘ . Wynika stąd, że
A) α = 315∘ B) α = 225∘ C)  ∘ α = 1 50 D)  ∘ α = 105

Cięciwa dzieli okrąg na dwa łuki w stosunku 5:7. Miara kąta wpisanego opartego na krótszym łuku okręgu jest równa
A) 150 ∘ B) 105∘ C) 90 ∘ D) 75∘

Średnice AB i CD okręgu o środku S przecinają się pod kątem  ∘ 50 (tak jak na rysunku).


PIC


Miara kąta α jest równa
A) 25∘ B) 3 0∘ C) 40∘ D) 50∘

*Ukryj

Średnice AB i CD okręgu o środku S przecinają się pod kątem  ∘ 40 (tak jak na rysunku).


PIC


Miara kąta α jest równa
A) 80∘ B) 4 0∘ C) 30∘ D) 20∘

Przez wierzchołek C trójkąta prostokątnego ABC poprowadzono styczną do okręgu opisanego na tym trójkącie.


PIC


Jeżeli |∡A | = 6 0∘ to miara kąta α jest równa
A) 60∘ B) 3 0∘ C) 45∘ D) 50∘

*Ukryj

Prosta l jest styczna do okręgu w punkcie C . Jeżeli kąt  ∘ α = 65 , to miara kąta β jest równa


PIC


A) 60∘ B) 6 5∘ C) 70∘ D) 75∘

Przez wierzchołek C trójkąta prostokątnego ABC poprowadzono styczną do okręgu opisanego na tym trójkącie.


PIC


Jeżeli |∡BAC | = 50∘ to miara kąta α jest równa
A) 60∘ B) 5 0∘ C) 45∘ D) 40∘

Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę


PIC


A) 1 50∘ B) 120∘ C) 115 ∘ D) 85∘

*Ukryj

Na okręgu o środku w punkcie O leżą punkty A ,B i C (zobacz rysunek). Kąt ABC ma miarę 133∘ , a kąt BOC ma miarę 50∘ .


PIC


Kąt AOB ma miarę
A) 68∘ B) 6 5∘ C) 44∘ D) 32,5∘

Punkty A ,B,C leżą na okręgu o środku S (rysunek),  ∘ |∡ASC | = 150 oraz |∡ACB | = 42∘ . Miara kąta BAC jest równa


PIC


A) 15∘ B) 42∘ C) 52 ,5 ∘ D) 63∘

Punkt O jest środkiem okręgu. Kąt środkowy α ma miarę


PIC


A) 50∘ B) 100∘ C) 13 0∘ D) 26 0∘

Punkt O jest środkiem okręgu (rysunek).


PIC


Miara kąta α jest równa
A) 110 ∘ B) 70∘ C) 16 0∘ D) 14 0∘

Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę


PIC


A) 1 70∘ B) 70∘ C) 95 ∘ D) 85∘

Punkt O jest środkiem okręgu (zobacz rysunek). Miara kąta LKM jest równa


PIC


A) 30∘ B) 6 0∘ C) 90∘ D) 120∘

Na okręgu o środku w punkcie O leżą punkty A ,B i C (zobacz rysunek). Kąt ABC ma miarę 121∘ , a kąt BOC ma miarę 40∘ .


PIC


Kąt AOB ma miarę
A) 59∘ B) 5 0∘ C) 81∘ D) 78∘

Punkt O jest środkiem okręgu (rysunek).


PIC


Miara kąta α jest równa
A) 110 ∘ B) 70∘ C) 16 0∘ D) 14 0∘

Punkty A , B i C leżą na okręgu o środku O (zobacz rysunek). Zaznaczony na rysunku wypukły kąt środkowy AOB ma miarę


PIC


A) 60∘ B) 100∘ C) 12 0∘ D) 14 0∘

Prosta l jest styczna do okręgu o środku O w punkcie A , AB jest cięciwą okręgu, |∡BOA | = 150∘ . Wówczas kąt ostry α między cięciwą AB , a prostą l jest równy
A) 15∘ B) 5 5∘ C) 75∘ D)  ∘ 85

*Ukryj

W okręgu o środku w punkcie O poprowadzono cięciwę AB . Trójkąt AOB jest prostokątny. Miara kąta, jaki tworzy cięciwa AB ze styczną do okręgu poprowadzoną w punkcie A , jest równa
A) 60∘ B) 3 0∘ C) 90∘ D)  ∘ 45

Odcinek AB jest średnicą okręgu o środku O .


PIC


Miara kąta DBC oznaczonego na rysunku literą α jest równa
A) 100 ∘ B) 90∘ C) 95 ∘ D) 85∘

Dany jest okrąg o środku S . Punkty K , L i M leżą na tym okręgu. Na łuku KL tego okręgu są oparte kąty KSL i KML (zobacz rysunek), których miary α i β spełniają warunek α+ β = 111 ∘ . Wynika stąd, że


PIC


A) α = 74∘ B) α = 76∘ C) α = 7 0∘ D) α = 72∘

*Ukryj

Dany jest okrąg o środku S . Punkty A , B i C leżą na tym okręgu. Na łuku AB tego okręgu są oparte kąty ACB i ASB (zobacz rysunek), których miary α i β spełniają warunek 4 β = 3α + 36 5∘ . Wynika stąd, że


PIC


A) β = 146∘ B) β = 73∘ C) β = 123∘ D) β = 219∘

Dany jest okrąg o środku S . Punkty K , L i M leżą na tym okręgu. Na łuku KL tego okręgu są oparte kąty KSL i KML (zobacz rysunek), których miary α i β spełniają warunek α+ β = 114 ∘ . Wynika stąd, że


PIC


A) β = 19∘ B) β = 38∘ C) β = 57∘ D) β = 76∘

Dany jest okrąg o środku S . Punkty K , L i M leżą na tym okręgu. Na łuku KL tego okręgu są oparte kąty KSL i KML (zobacz rysunek), których miary α i β spełniają warunek α+ β = 312 ∘ . Wynika stąd, że


PIC


A) β = 156∘ B) β = 104∘ C) β = 208∘ D) β = 234∘

Miara kąta wpisanego opartego na tym samym łuku co kąt środkowy o mierze 78 ∘ jest równa
A) 156 ∘ B) 39∘ C) 34 ∘ D) 87∘

*Ukryj

Miara kąta wpisanego opartego na tym samym łuku co kąt środkowy o mierze 52 ∘ jest równa
A) 104 ∘ B) 29∘ C) 26 ∘ D) 58∘

Na poniższym rysunku punkt O jest środkiem okręgu.


PIC


Miara kąta α jest równa
A) 50∘ B) 7 0∘ C) 80∘ D) 65∘

Trójkąt ABC jest wpisany w okrąg o środku O . Jeśli  ∘ |∡CAB | = 68 i CD jest średnicą okręgu, to miara kąta DCB jest równa
A) 22∘ B) 4 4∘ C) 66∘ D) 68∘

Kąt ABC (patrz rysunek) ma miarę


PIC


A) 4 0∘ B) 50∘ C) 60 ∘ D) 70∘

Dane są dwa koła. Promień pierwszego koła jest większy od promienia drugiego koła o 30%. Wynika stąd, że pole pierwszego koła jest większe od pola drugiego koła
A) o mniej niż 50%, ale więcej niż 40%. B) o mniej niż 60% , ale więcej niż 50%.
C) dokładnie o 60%. D) o więcej niż 60%.

*Ukryj

Dane są dwa koła. Promień pierwszego koła jest większy od promienia drugiego koła o 20%. Wynika stąd, że pole pierwszego koła jest większe od pola drugiego koła
A) o mniej niż 50%, ale więcej niż 40%. B) o mniej niż 60% , ale więcej niż 50%.
C) dokładnie o 60%. D) o więcej niż 60%.

Jeżeli suma miar kąta środkowego i kąta wpisanego opartych na tym samym łuku jest równa 1 80∘ , to kąty te są oparte na
A) 12 okręgu B) 23 okręgu C) 1 3 okręgu D) 1 4 okręgu

Dane są okręgi styczne wewnętrznie o środkach A i B . Wiadomo, że promień jednego okręgu jest trzy razy dłuższy od promienia drugiego okręgu i |AB | = 2 23 . Promienie tych okręgów mają długość
A) 1 3 i 3 B) 1 1 2 i 41 2 C) 2 3 i 2 D)  1 13 i 4

Suma miar kąta wpisanego i kąta środkowego, opartych na 1 6 okręgu, jest równa
A) 60∘ B) 180∘ C) 45 ∘ D) 90∘

Odcinek AB jest średnicą okręgu o środku O i promieniu r . Na tym okręgu wybrano punkt C , taki, że |OB | = |BC | (zobacz rysunek).


PIC


Pole trójkąta AOC jest równe
A) 12r2 B) 14r2 C) π4-r2 D) √-3 2 4 r

Dane są dwa okręgi o promieniach 8 i 13. Okręgi te są styczne wewnętrznie, gdy odległość ich środków jest równa
A) 8 B) 21 C) 5 D) 13

*Ukryj

Dane są dwa okręgi styczne wewnętrznie o promieniach r1 = 10 cm i r2 = 4 cm . Zatem odległość między ich środkami jest równa
A) 2 cm B) 6 cm C) 8 cm D) 14 cm

Dane są dwa okręgi o promieniach 27 i 11. Okręgi te są styczne wewnętrznie, gdy odległość między ich środkami jest równa
A) 38 B) 27 C) 16 D) 11

Dane są dwa okręgi styczne zewnętrznie o promieniach 4 i 10. Odległość między środkami tych okręgów jest równa
A) 6 B) 8 C) 14 D) 10

Dane są dwa okręgi styczne zewnętrznie o promieniach 6 i 13. Odległość między środkami tych okręgów jest równa
A) 7 B) 19 C) 13 D) 10

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miara zaznaczonego kąta wpisanego ACB jest równa
A) 65∘ B) 100∘ C) 11 5∘ D) 13 0∘

*Ukryj

Punkt O jest środkiem okręgu. Kąt wpisany α ma miarę


PIC


A) 8 0∘ B) 100∘ C) 11 0∘ D) 12 0∘

Średnice AB i CD okręgu o środku S przecinają się pod kątem  ∘ 130 (tak jak na rysunku).


PIC


Miara kąta α jest równa
A) 65∘ B) 100∘ C) 11 5∘ D) 13 0∘

Punkt S jest środkiem koła. Zatem miara kąta α jest równa


PIC


A) 7 0∘ B) 220∘ C) 14 0∘ D) 25 0∘

Punkt O jest środkiem okręgu. Kąt wpisany α ma miarę


PIC


A) 7 5∘ B) 95∘ C) 10 5∘ D) 11 0∘

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miara zaznaczonego kąta wpisanego ACB jest równa
A) 125 ∘ B) 110∘ C) 55 ∘ D) 70∘

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miara zaznaczonego kąta wpisanego ACB jest równa
A) 50∘ B) 100∘ C) 11 5∘ D) 13 0∘

Miara kąta β zaznaczonego na rysunku obok jest równa:


PIC


A) 76∘ B) 284∘ C) 15 2∘ D) 14 2∘

Strona 1 z 5>>>>