Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Dany jest nieskończony ciąg geometryczny, w którym iloraz jest trzy razy większy od pierwszego wyrazu, a suma wszystkich wyrazów tego ciągu jest równa 14 . Pierwszy wyraz tego ciągu jest równy
A) 3 7 B) 1 7 C) 7 3 D) 7

Funkcja liniowa f jest określona wzorem f (x) = (− 2k + 3)x + k − 1 , gdzie k ∈ R . Funkcja f jest malejąca dla każdej liczby k należącej do przedziału
A) (− ∞ ,1) B) (− ∞ ,− 3) 2 C) (1,+ ∞ ) D) (3 ) 2,+ ∞

W urnie znajdują się jedynie kule białe i czarne. Kul białych jest trzy razy więcej niż czarnych. Oblicz, ile jest kul w urnie, jeśli przy jednoczesnym losowaniu dwóch kul prawdopodobieństwo otrzymania kul o różnych kolorach jest większe od -9 22 .

Ciąg (an ) jest określony wzorem  n an = 2 ⋅(n + 1) dla każdej liczby naturalnej n ≥ 1 . Wyraz a4 jest równy
A) 64 B) 40 C) 48 D) 80

Dla każdej liczby rzeczywistej x różnej od (− 1) , 0 i 1, wartość wyrażenia  2 -22x- ⋅ x+x1- x − 1 jest równa wartości wyrażenia
A) 2x + 2 B) 2x-- x−1 C) -22x- x − 1 D) 2x33+1 x −1

Prosta k ma równanie y = 2x − 3 . Wskaż równanie prostej l równoległej do prostej k i przechodzącej przez punkt D o współrzędnych (− 2,1) .
A) y = − 2x + 3 B) y = 2x + 1 C) y = 2x + 5 D) y = −x + 1

Ciąg (bn) jest określony wzorem bn = (n + 2 )(7 − n ) dla każdej liczby naturalnej n ≥ 1 . Liczba dodatnich wyrazów ciągu (bn) jest równa
A) 6 B) 7 C) 8 D) 9

W trójkącie prostokątnym stosunek różnicy długości przyprostokątnych do długości przeciwprostokątnej jest równy 12 . Oblicz cosinusy kątów ostrych tego trójkąta.

Prosta o równaniu y = − 2x+ (3m + 3) przecina w układzie współrzędnych oś Oy w punkcie (0,2) . Wtedy
A) m = − 23 B) m = − 13 C) m = 1 3 D) m = 5 3

Na rysunku, w kartezjańskim układzie współrzędnych (x,y) , przedstawiono dwie proste równoległe, które są interpretacją geometryczną jednego z poniższych układów równań.


ZINFO-FIGURE


Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest
A) { 3 y = − 2x + 3 y = − 32x − 1 B) { 3 y = 2x+ 3 y = − 23x− 1
C) { y = 3x + 3 2 y = 32x − 1 D) { y = − 3x − 3 2 y = 32x + 1

Dany jest rosnący ciąg geometryczny  2 (a,aq,aq ) , którego wszystkie wyrazy i iloraz są liczbami całkowitymi nieparzystymi. Jeśli największy wyraz ciągu zmniejszymy o 4, to otrzymamy ciąg arytmetyczny. Oblicz wyraz aq tego ciągu.

Na początku miesiąca komputer kosztował 3 500 zł. W drugiej dekadzie tego miesiąca cenę komputera obniżono o 10%, a w trzeciej dekadzie cena tego komputera została jeszcze raz obniżona, tym razem o 15%. Innych zmian ceny tego komputera w tym miesiącu już nie było. Cena komputera na koniec miesiąca była równa
A) 3 272,50 zł B) 2 625 zł C) 2 677,50 zł D) 2 800 zł

Wyznacz wszystkie wartości parametru m , dla których równanie

 2 3 2 x − 4mx − m + 6m + m − 2 = 0

ma dwa różne pierwiastki rzeczywiste x1, x2 takie, że  2 (x1 − x2) < 8(m + 1) .

Pudełko w kształcie prostopadłościanu ma wymiary 5 dm × 3 dm × 2 dm (zobacz rysunek).


PIC


Przekątna KL tego prostopadłościanu jest – z dokładnością do 0,01 dm – równa
A) 5,83 dm B) 6,16 dm C) 3,61 dm D) 5,39 dm

Właściciel sklepu z zabawkami przeprowadził lokalne badanie rynkowe dotyczące wpływu zmiany ceny zestawu klocków na liczbę kupujących ten produkt. Z badania wynika, że dzienny przychód P ze sprzedaży zestawów klocków, w zależności od kwoty obniżki ceny zestawu o x zł, wyraża się wzorem

P(x) = (70− x)(20 + x)

gdzie x jest liczbą całkowitą spełniającą warunki x ≥ 0 i x ≤ 60 . Dzienny przychód ze sprzedaży zestawów klocków będzie równy 800 zł, gdy liczba x jest równa
A) 25 B) 30 C) 45 D) 50 E) 60

Wykresem funkcji kwadratowej  2 f(x ) = 3x + bx + c jest parabola o wierzchołku w punkcie W = (− 3,2) . Wzór tej funkcji w postaci kanonicznej to
A) f(x ) = 3(x − 3)2 + 2 B) f(x) = 3(x+ 3)2 + 2
C)  2 f(x) = (x− 3) + 2 D)  2 f(x ) = (x+ 3) + 2

Dane są punkty M = (− 2,1) i N = (− 1,3 ) . Punkt K jest środkiem odcinka MN . Obrazem punktu K w symetrii względem początku układu współrzędnych jest punkt
A) K ′ = (2,− 3) 2 B) K ′ = (2, 3) 2 C)  ′ ( 3 ) K = 2,2 D)  ′ (3 ) K = 2,− 2

Liczba wszystkich dodatnich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry 0 i 2, jest równa
A) 8 ⋅8⋅ 8⋅3 B) 8⋅7 ⋅6 ⋅3 C) 8 ⋅10⋅ 10⋅ 4 D) 9 ⋅8⋅ 7⋅4

Strona 1 z 111
spinner