Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f . Wierzchołkiem tej paraboli jest punkt W = (1,9 ) . Liczby − 2 i 4 to miejsca zerowe funkcji f .


PIC


Zbiorem wartości funkcji f jest przedział
A) (− ∞ ,− 2⟩ B) ⟨− 2,4⟩ C) ⟨4,+ ∞ ) D) (− ∞ ,9⟩

Ukryj Podobne zadania

Na rysunku przedstawiono fragment paraboli będącej wykresem funkcji kwadratowej g . Wierzchołkiem tej paraboli jest punkt W = (1,1) .


PIC


Zbiorem wartości funkcji g jest przedział
A) (− ∞ ,0⟩ B) ⟨0,2⟩ C) ⟨1,+ ∞ ) D) (− ∞ ,1⟩

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f . Wierzchołkiem tej paraboli jest punkt W = (2,− 4) . Liczby 0 i 4 to miejsca zerowe funkcji f .


PIC


Zbiorem wartości funkcji f jest przedział
A) (− ∞ ,0⟩ B) ⟨0,4⟩ C) ⟨− 4,+ ∞ ) D) ⟨4,+ ∞ ⟩

Na rysunku przedstawiono fragment paraboli będącej wykresem funkcji kwadratowej g . Wierzchołkiem tej paraboli jest punkt W = (− 3,2) .


PIC


Zbiorem wartości funkcji g jest przedział
A) (− ∞ ,2⟩ B) ⟨ ⟩ − 92, 52 C) ⟨− 3,+ ∞ ) D) (− ∞ ,3⟩

W kartezjańskim układzie współrzędnych (x,y ) przedstawiono fragment paraboli, która jest wykresem funkcji kwadratowej f (zobacz rysunek). Wierzchołek tej paraboli oraz punkty przecięcia paraboli z osią Ox układu współrzędnych mają obie współrzędne całkowite.


ZINFO-FIGURE


Zbiorem wartości funkcji f jest przedział
A) (− ∞ ,− 2] B) [1,+ ∞ ) C) [− 1,3] D) [− 2,+ ∞ )

W kartezjańskim układzie współrzędnych (x,y) przedstawiono fragment wykresu funkcji kwadratowej f (zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f , oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.


ZINFO-FIGURE


Zbiorem wartości funkcji f jest przedział
A) (− ∞ ,− 2] B) (− ∞ ,4] C) [− 2,+ ∞ ) D) [4,+ ∞ )

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f . Wierzchołkiem tej paraboli jest punkt W = (− 2,− 9) . Liczby − 5 i 1 to miejsca zerowe funkcji f .


PIC


Zbiorem wartości funkcji f jest przedział
A) (− ∞ ,− 5⟩ B) ⟨− 5,1⟩ C) ⟨− 9,+ ∞ ) D) ⟨1 ,+ ∞ ⟩

W kartezjańskim układzie współrzędnych (x,y) przedstawiono fragment wykresu funkcji kwadratowej f (zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f , oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.


ZINFO-FIGURE


Zbiorem wartości funkcji f jest przedział
A) (− ∞ ,2] B) (− ∞ ,− 8] C) [2,+ ∞ ) D) [− 8,+ ∞ )

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f . Wierzchołkiem tej paraboli jest punkt  ( ) W = 2,21 2 . Liczby 1 2 i 31 2 to miejsca zerowe funkcji f .


PIC


Zbiorem wartości funkcji f jest przedział
A) ( 7⟩ − ∞ ,2 B) ⟨1 7⟩ 2, 2 C) ⟨ ) 7,+ ∞ 2 D) ( ⟩ − ∞ , 5 2

Oblicz długości boków trójkąta prostokątnego wiedząc, że długości przyprostokątnych różnią się o 9 cm, a jego pole jest równe 68 cm 2 .

Ukryj Podobne zadania

Oblicz obwód trójkąta prostokątnego o polu powierzchni równym  2 52 cm , wiedząc, że długości jego przyprostokątnych różnią się o 5 cm.

Pole trójkąta prostokątnego jest równe  2 6 0 cm . Jedna przyprostokątna jest o 7 cm dłuższa od drugiej. Oblicz długość przeciwprostokątnej tego trójkąta.

Oblicz obwód trójkąta prostokątnego o polu powierzchni równym  2 35 cm , wiedząc, że długości jego przyprostokątnych różnią się o 3 cm.

Oblicz długości boków trójkąta prostokątnego o polu powierzchni równym 20, wiedząc, że długości jego przyprostokątnych różnią się o 6.

Pole trójkąta prostokątnego jest równe  2 8 4 cm . Jedna przyprostokątna jest o 17 cm dłuższa od drugiej. Oblicz długość przeciwprostokątnej tego trójkąta.

Oblicz długości boków trójkąta prostokątnego o polu powierzchni równym 5, wiedząc, że długości jego przyprostokątnych różnią się o 3.

Danych jest osiem kul z numerami od 1 do 8, oraz dziesięć szuflad z numerami od 1 do 10. Rozmieszczamy w dowolny sposób kule w szufladach. Oblicz prawdopodobieństwa następujących zdarzeń:

  • A – wszystkie kule znajdą się w szufladach z numerami parzystymi.
  • B – dokładnie dwie szuflady pozostaną puste.

Gracz rzuca dwa razy symetryczną sześcienną kostką do gry i oblicza iloczyn wyrzucanych oczek. Jeśli iloczyn ten jest liczbą podzielną przez 2 lub przez 3 to przegrywa. W pozostałych przypadkach wygrywa.

  • Uzupełnij tabelkę tak, aby przedstawiała wszystkie wyniki tego doświadczenia.
  • Podaj liczbę wynikow sprzyjających wygranej gracza i oblicz prawdopodobieństwo wygranej.

PIC

Spawacz ma wykonać z blachy konstrukcję, która powstaje przez wycięcie z graniastosłupa prostego trójkątnego innego graniastosłupa prostego trójkątnego. Wymiary elementów są podane na rysunku.


PIC


  • Oblicz objętość tej konstrukcji.
  • Oblicz łączne pole powierzchni wszystkich 7 ścian otrzymanej bryły. Wynik podaj z zaokrągleniem do  2 1 cm .

Na boku BC trójkąta ABC wybrano punkt D tak, by |∡CAD | = |∡ABC | . Odcinek AE jest dwusieczną kąta DAB . Udowodnij, że |CE | = |AC | .


PIC


Po torze wodnym o długości 10 km pływają w kółko dwie łodzie motorowe, przy czym druga z nich płynie z prędkością o 5 km/h większą od prędkości pierwszej łodzi. Łodzie te wystartowały z tego samego punktu i ponownie spotkały się, gdy pierwsza z łodzi wykonała pełne 3 okrążenia toru. Oblicz średnie prędkości obu łodzi.

Ukryj Podobne zadania

Trasa rowerowa wokół jeziora ma długość 12 kilometrów. Dwóch rowerzystów wyrusza z tego samego miejsca i okrąża jezioro w tym samym kierunku. Średnia prędkość jednego z nich jest o 4 km/h mniejsza niż prędkość drugiego rowerzysty. Do ponownego spotkania rowerzystów doszło, gdy szybszy z nich wykonał 4 okrążenia jeziora. Jakie były średnie prędkości rowerzystów?

Liczba wszystkich krawędzi graniastosłupa jest równa 24. Wówczas podstawą tego graniastosłupa jest:
A) sześciokąt B) ośmiokąt C) dziesięciokąt D) dwunastokąt

Ukryj Podobne zadania

Liczba wszystkich krawędzi graniastosłupa jest równa 21. Wówczas podstawą tego graniastosłupa jest:
A) sześciokąt B) ośmiokąt C) siedmiokąt D) dwunastokąt

Liczby 2a− 3,a,2a+ 3 , w podanej kolejności, tworzą ciąg geometryczny. Wyznacz a .

Ukryj Podobne zadania

Dany jest trzywyrazowy ciąg (x + 2,2 − 4x ,x+ 17) . Oblicz wszystkie wartości x , dla których ten ciąg jest geometryczny.

Spośród wyrazów skończonego ciągu arytmetycznego (an) danego wzorem an = 5n + 8 , gdzie n = 1,2,...,15 wybieramy losowo 3. Oblicz prawdopodobieństwo, że iloczyn wybranych liczb jest podzielny przez 3.

Firma obuwnicza otrzymała zamówienie na wykonanie 720 par butów. Aby zrealizować zamówienie na czas, postanowiono wykonywać dziennie jednakową liczbę par butów. Po wykonaniu 6623 % zamówienia usprawniono produkcję tak, że dzienna produkcja wzrosła o 4 pary, zaś zamówienie zrealizowano o 5 dni wcześniej. W ciągu ilu dni planowano wykonać zamówienie?

Ukryj Podobne zadania

Firma odzieżowa otrzymała zamówienie na wykonanie 600 kurtek. Aby zrealizować zamówienie firma postanowiła wykonywać dziennie tę samą liczbę kurtek. Po wykonaniu 60% zamówienia usprawniono produkcję tak, że dzienna produkcja wzrosła o 6 kurtek, zaś zamówienie zrealizowano o 2 dni wcześniej w stosunku do pierwotnego planu. W ciągu ilu dni zrealizowano zamówienie? 

Wielomian  4 3 2 W (x) = x + 2x − 5x + px + q jest podzielny przez dwumian (x − 2) , a przy dzieleniu przez (x + 1) daje resztę − 10 . Wyznacz p i q .

Ukryj Podobne zadania

Wielomian  4 3 2 W (x) = 3x + ax − 2x − 7x + b jest podzielny przez dwumian (x − 2) , a przy dzieleniu przez (x − 1) daje resztę 3. Wyznacz a i b .

Ukryj Podobne zadania

Dany jest punkt M = (2 ,8 ) . Wyznacz równanie takiej prostej k , do której należy punkt M , że na ujemnej półosi Ox i dodatniej półosi Oy układu xOy prosta ta wyznacza odcinki OA i OB , których suma długości jest równa 6. Oblicz obwód trójkąta AOB .

Rozwiąż równanie  3 3 8sin x = 8 sin x cos2x + 1 − co s2x w przedziale ⟨0,2π ⟩ .

Miary kątów trójkąta są w stosunku 1:2:3. Obwód koła opisanego na tym trójkącie jest równy 1 2π . Oblicz pole tego trójkąta.

Oblicz miary kątów środkowych AOB zaznaczonych na rysunkach, jeśli dana jest miara kąta wpisanego ∡ACB = α .


PIC


Kąt środkowy oparty na łuku, którego długość jest równa 4 9 długości okręgu, ma miarę
A) 160 ∘ B) 80∘ C) 40 ∘ D) 20∘

Ukryj Podobne zadania

Kąt środkowy oparty na łuku, którego długość jest równa 3 8 długości okręgu, ma miarę
A) 270 ∘ B) 135∘ C) 67 ,5 ∘ D) 33,7 5∘

W graniastosłupie prawidłowym czworokątnym ABCDEF GH połączono punkty będące środkami krawędzi BC , CD , AD i GH . Wyznacz objętość powstałej bryły wiedząc, że  √ -- |DB | = 5 2 i kąt DBH ma miarę 6 0∘ .


PIC


Strona 393 z 461
spinner