Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Pierwiastkami wielomianu stopnia trzeciego są liczby 1, 3, 5. Współczynnik przy najwyższej potędze zmiennej tego wielomianu jest równy 12 . Uzasadnij, że dla każdej liczby całkowitej nieparzystej wartość tego wielomianu jest liczbą podzielną przez 24.

Dane są wielomiany  2 W (x) = x + 3x+ 2 , F (x) = ax + b , H (x) = − 2x3 − 3x2 + 5x + 6 . Wyznacz współczynniki a,b, dla których wielomiany W (x) ⋅F(x ) oraz H (x ) są równe.

Dane są wielomiany  3 2 W (x) = 2x − 3x − 8x − 3 i  2 P(x) = (x + 1 )(ax + bx + c) .

  • Wyznacz współczynniki a,b,c tak, aby W (x) = P (x) .
  • Przedstaw wielomian W (x) jako iloczyn wielomianów liniowych.

Dany jest wielomian  3 2 W (x) = − 2x + kx + 4x − 8 .

  • Wyznacz wartość k tak, aby reszta z dzielenia wielomianu W przez dwumian x + 1 była równa -6.
  • Dla znalezionej wartości k rozłóż wielomian na czynniki liniowe.
  • Dla znalezionej wartości k rozwiąż nierówność W (x + 1) ≤ − 3x 3 + 5x − 2 .

Wyznacz współczynniki a,b wielomianu  3 2 W (x) = x + ax + bx+ 1 wiedząc, że dla każdego x ∈ R prawdziwa jest równość: W (x − 1) − W (x ) = − 3x2 + 3x − 6 .

Wielomian W (x) stopnia 3 jest podzielny przez trójmian kwadratowy P (x) = x2 − x − 72 . Wiadomo ponadto, że 26W (10) + 21W (7) = 0 . Wyznacz miejsca zerowe wielomianu W (x) .

Wielomian W dany jest wzorem  3 2 W (x) = x + ax − 4x + b .

  • Wyznacz a,b oraz c tak, aby wielomian W był równy wielomianowi P , gdy P (x) = x3 + (2a + 3)x 2 + (a + b + c)x − 1 .
  • Dla a = 3 i b = 0 zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.

Maksymalny przedział, na którym funkcja  3 2 f(x) = mx + mx − 8x − 9 jest malejąca ma długość 2. Oblicz wartość parametru m oraz wyznacz największą wartość funkcji na przedziale ⟨− 2,1⟩ .

Rozłóż wielomian  3 2 W (x ) = x + 3x − 2x − 6 na czynniki liniowe.

Korzystając z definicji funkcji rożnowartościowej wykaż, że funkcja f określona wzorem f(x) = x 3 + 2x − 3 jest rożnowartościowa.

Dany jest wielomian  3 2 P(x) = 4x − 12x + 9x , gdzie x ∈ R .

  • Dla jakich argumentów wielomian P(x) przyjmuje wartość równą 27?
  • Wielomiany P (x) = 4x 3 − 12x 2 + 9x oraz W (x) = x(ax + b)2 są równe. Wyznacz a i b .

Wielomiany  2 P (x) = (x + qx + p)(x − q ) i  3 2 2 R (x) = x + (p − 2q)x + (q − 2p ) są równe. Oblicz p i q .

Sprawdź, czy równe są wielomiany  3 W 1(x) = (x + 2) − (2x + 3)(2x − 3) i
W 2(x) = (x− 5)(x2 + 1)+ 7x2 + 11x + 22 .

Wielomian  3 2 W (x) = x + cx − 10x + d jest podzielny przez dwumian P (x) = x + 2 . Przy dzieleniu wielomianu W (x) przez dwumian Q (x) = x− 1 otrzymujemy resztę (− 30) . Oblicz pierwiastki wielomianu W (x ) i rozwiąż nierówność W (x) ≥ 0 .

Dany jest wielomian  3 2 W (x) = x − 5x − 9x + 45 .

  • Sprawdź, czy punkt A = (1,3 0) należy do wykresu tego wielomianu.
  • Zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.

Dany jest wielomian  3 2 W (x) = 2x + ax − 14x+ b .

  1. Dla a = 0 i b = 0 otrzymamy wielomian W (x) = 2x 3 − 14x . Rozwiąż równanie 2x 3 − 14x = 0 .
  2. Dobierz wartości a i b tak, aby wielomian W (x) był podzielny jednocześnie przez x− 2 oraz x+ 3 .

Wielomiany  2 W (x ) = ax(x + b) i  3 2 V (x) = x + 2x + x są równe. Oblicz a i b .

Dany jest wielomian  3 2 W (x) = 10x + 15x + 7x + 1 .

  • Zapisz wielomian W (x) jako iloczyn wielomianów liniowych.
  • Określ dziedzinę funkcji  ( ) f (x) = log (−x ) + log − W-(x) 3 3 x .