Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Mrówka przeszła po powierzchni sześcianu z wierzchołka A do wierzchołka będącego drugim końcem przekątnej sześcianu wychodzącej z wierzchołka A , przy czym była to droga najkrótsza. Narysuj siatkę sześcianu i oblicz odległość, jaką pokonała mrówka, jeżeli krawędź sześcianu ma długość √ -- 5 .

Oblicz objętość i pole powierzchni graniastosłupa, którego podstawą jest romb o przekątnych długości 6 cm i 8 cm, którego przekątna ściany bocznej tworzy z krawędzią podstawy kąt o mierze 45∘ .

Na rysunku przedstawiono fragment siatki graniastosłupa prawidłowego trójkątnego.


PIC


Pole narysowanego trójkąta jest równe  √ -- 16 3 cm 2 , a pole prostokąta jest równe  √ -- 24 3 cm 2 . Oblicz objętość tego graniastosłupa.

Trójkąt równoramienny o kącie  ∘ 120 i ramieniu długości 6 obrócono względem zewnętrznej wysokości, otrzymując wydrążoną bryłę. Oblicz objętość tej bryły.


PIC


Przekrój osiowy stożka jest trójkątem równobocznym o polu  √ -- 16 3 . Oblicz objętość i pole powierzchni całkowitej tego stożka.

Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego jest równe 80 cm 2 , a pole jego powierzchni całkowitej wynosi 144 cm 2 . Oblicz długość krawędzi podstawy i długość krawędzi bocznej tego ostrosłupa. Zapisz obliczenia.

Pole powierzchni czworościanu foremnego jest równe  √ -- 7 2 3 . Oblicz długość krawędzi tego czworościanu.

Objętość prostopadłościanu jest równa 405. Stosunki długości krawędzi prostopadłościanu wychodzących z tego samego wierzchołka prostopadłościanu to 1 : 3 : 5. Oblicz pole powierzchni całkowitej prostopadłościanu.

Po rozklejeniu ściany bocznej pudełka mającego kształt walca otrzymano równoległobok. Jeden z boków tej figury ma długość 44 cm, a jej pole jest równe 22 0 cm 2 . Oblicz objętość tego pudełka. Przyjmij przybliżenie π równe 272 . Zapisz obliczenia.


PIC


*Ukryj

Po rozklejeniu ściany bocznej pudełka mającego kształt walca otrzymano równoległobok. Jeden z boków tej figury ma długość 33 cm, a jej pole jest równe 13 2 cm 2 . Oblicz objętość tego pudełka. Przyjmij przybliżenie π równe 272 . Zapisz obliczenia.


PIC


Metalową kulę o promieniu 10 cm i stożek o średnicy 16 cm i wysokości 12 cm przetopiono. Następnie z otrzymanego metalu wykonano walec o średnicy 8 cm. Jaką wysokość ma ten walec?

*Ukryj

Metalową kulę o promieniu 5 cm i stożek o średnicy 12 cm i wysokości 15 cm przetopiono. Następnie z otrzymanego metalu wykonano walec o średnicy 8 cm. Jaką wysokość ma ten walec?

Oblicz objętość graniastosłupa, którego podstawą jest romb o przekątnych długości 16 cm i 30 cm, a krawędź boczna jest dwa razy dłuższa od krawędzi podstawy.

Na rysunku przedstawiono dwie różne ściany prostopadłościanu. Jedna jest kwadratem o boku 5 cm, a druga – prostokątem o bokach 3 cm i 5 cm.


PIC


Oblicz sumę długości wszystkich krawędzi prostopadłościanu o takich wymiarach.

*Ukryj

Na rysunku przedstawiono dwie różne ściany prostopadłościanu. Jedna jest prostokątem o bokach 6 cm i 9 cm, a druga – prostokątem o bokach 9 cm i 12 cm.


PIC


Oblicz pole powierzchni całkowitej prostopadłościanu o takich wymiarach.

Ile litrów wody można wlać do garnka w kształcie walca o średnicy 24 cm i wysokości 15 cm?

Suma wszystkich krawędzi ostrosłupa prawidłowego trójkątnego wynosi 72 cm. Oblicz długość krawędzi podstawy tego ostrosłupa, jeśli krawędź boczna ma długość 16 cm.

Z czterech ołowianych sześcianów o przekątnej długości  √ -- 4 3 wykonano graniastosłup prawidłowy czworokątny o krawędzi podstawy długości 8. Oblicz długość przekątnej otrzymanego graniastosłupa.

W graniastosłupie prawidłowym czworokątnym powierzchnia boczna po rozwinięciu jest kwadratem o polu S = 400 cm 2 . Oblicz objętość i pole powierzchni całkowitej tej bryły .

Oblicz pole powierzchni i objętość sześcianu, którego przekątna ma długość  √ -- 4 3 cm .

Pole powierzchni bocznej graniastosłupa prawidłowego czworokątnego jest 6 razy większe, od jego pola podstawy, a objętość tego graniastosłupa jest równa 12. Oblicz długość krawędzi podstawy oraz długość przekątnej tego graniastosłupa. Zapisz obliczenia.

Dany jest ostrosłup o podstawie pięciokątnej ABCDES (zobacz rysunek). Każda ze ścian bocznych tego ostrosłupa jest trójkątem o polu trzy razy mniejszym niż pole pięciokąta ABCDE . Pole powierzchni całkowitej tego ostrosłupa jest równe 136. Oblicz pole jego podstawy.


PIC


W kostce mającej kształt sześcianu o krawędzi długości 6 ścięto wszystkie naroża płaszczyznami przechodzącymi przez środki odpowiednich krawędzi (zobacz rysunek). Oblicz objętość otrzymanej bryły.


PIC


Strona 1 z 3>>>>