Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Funkcje

Wyszukiwanie zadań

Funkcja  2−x- f(x) = x+b przyjmuje wartości ujemne wtedy i tylko wtedy gdy x < − 5 lub x > 2 .

  • Oblicz b .
  • Napisz wzór funkcji f w postaci kanonicznej.
  • Wyznacz zbiór tych argumentów, dla których funkcja f osiąga wartości nie większe niż funkcja  3x+8 g (x) = -x+5- .

Wyznacz dziedzinę i zbiór wartości funkcji

 ( )2 f(x ) = 1+ x-+-2-+ x-+-2- + ... x + 4 x + 4

Naszkicuj wykres funkcji f(x) .

Ukryj Podobne zadania

Określ dziedzinę i zbiór wartości funkcji  1+sin2-x−-cos2x- f(x ) = sin2x− sin4x .

Reszta z dzielenia wielomianu  5 3 2 W (x) = x + ax + x − 1 przez dwumian x 2 − 2 jest równa 1. Oblicz wartość współczynnika a .

Wyznacz wzór funkcji liniowej f , która dla każdego x ∈ R spełnia warunek f (2x− 1) = − 6x + 4 .

Funkcja homograficzna f jest monotoniczna w przedziałach (− ∞ ;2 ) i (2;+ ∞ ) . Zbiór R ∖ {0} jest zbiorem wartości tej funkcji, a wartość 1 funkcja przyjmuje dla argumentu 6.

  • Znajdź wzór funkcji f .
  • Naszkicuj wykres funkcji f .
  • Uzasadnij, że funkcja f nie jest monotoniczna w zbiorze (− ∞ ;2)∪ (2;+ ∞ ) .

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1),(x + 2),(x − 3 ) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 3 − 2x 2 − 5x+ 6 .

Ukryj Podobne zadania

Przy dzieleniu wielomianu w (x) przez dwumian (x − 1 ) otrzymujemy resztę (− 3) , przy dzieleniu przez dwumian (x − 2 ) resztę 6, a przy dzieleniu przez dwumian (x+ 3) resztę 1. Wyznacz resztę z dzielenia wielomianu w(x) przez wielomian p(x) = x 3 − 7x + 6 .

Wyznacz resztę R(x) z dzielenia wielomianu W (x) przez wielomian P (x) = x3 − 2x 2 − x + 2 wiedząc, że W (− 1) = − 1, W (2) = 2, W (1) = 5 .

Reszta z dzielenia wielomianu  3 2 x + px − x + q przez trójmian  2 (x + 2) wynosi 1 − x . Wyznacz pierwiastki tego wielomianu.

Wykaż, że jeżeli α,β ,γ są kątami ostrymi i  -1- sin α = √ 5 ,  -1-- sin β = √26 , sin γ = √1-- 65 to α+ β+ γ = 4 5∘ .

Funkcja kwadratowa  2 f(x ) = ax + bx + c , spełnia warunek f(8) = f (− 2) . Wykaż, że dla dowolnej liczby rzeczywistej x , spełniony jest warunek f (3− x ) = f(3 + x) .

Wykaż, że jeżeli α i β są kątami ostrymi, dla których  1 tgα = 7 i  √-10 sin β = 10 , to α + 2β = π4- .

Ukryj Podobne zadania

Wielomian  3 2 W (x) = x − (a+ b )x − (a − b )x − 8 jest podzielny przez dwumian (x+ 1) , a reszta z dzielenia wielomianu W (x) przez dwumian (x + 3) wynosi − 2 . Oblicz a i b , a następnie rozwiąż nierówność W (x) < 4 .

Funkcja f jest określona wzorem  2x−b- f(x ) = x− 9 dla x ⁄= 9 . Ponadto wiemy, że f (4) = − 1 . Oblicz współczynnik b .

Wyznacz wszystkie wartości parametru m , dla których dziedziną funkcji

 2 f(x) = log (mx + 4mx + m + 3)

jest zbiór wszystkich liczb rzeczywistych.

Kąt α jest kątem ostrym i tg α = 4 . Wyznacz sinus i cosinus tego kąta.

Ukryj Podobne zadania
Strona 18 z 20
spinner