Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Funkcje

Wyszukiwanie zadań

Funkcja f jest określona wzorem  16- f(x ) = x16 dla każdej liczby rzeczywistej x ⁄= 0 . Oblicz pochodną funkcji f w punkcie x = − 2 .

Wykaż, że jeżeli wielomian  6 4 2 W (x) = x + ax + bx + c jest podzielny przez trójmian x2 + x+ 1 , to jest również podzielny przez trójmian x 2 − x + 1 .

Ukryj Podobne zadania

Wielomian  7 5 3 W (x) = x + ax + bx + cx+ 7 jest podzielny przez wielomian x 2 + x + 1 . Wyznacz resztę z dzielenia wielomianu W (x ) przez wielomian x 2 − x + 1 .

Wielomian  4 3 2 W (x) = x + 2x − 5x + px + q jest podzielny przez dwumian (x − 2) , a przy dzieleniu przez (x + 1) daje resztę − 10 . Wyznacz p i q .

Ukryj Podobne zadania

Wielomian  4 3 2 W (x) = 3x + ax − 2x − 7x + b jest podzielny przez dwumian (x − 2) , a przy dzieleniu przez (x − 1) daje resztę 3. Wyznacz a i b .

Uzasadnij, że nie istnieje granica  -x2- lxi→m3x− 3 .

Wyznacz najmniejszą i największą wartość funkcji f(x) = −(x − 2 )(x+ 1) w przedziale ⟨0 ;4⟩ .

Ukryj Podobne zadania

Oblicz najmniejszą i największą wartość funkcji kwadratowej f (x) = (2x + 1)(x − 2) w przedziale ⟨− 2,2⟩ .

Wyznacz najmniejszą i największą wartość funkcji f(x) = − 3 (x+ 3)(x− 2) w przedziale ⟨− 2;1 ⟩ .

Wyznacz najmniejszą i największą wartość funkcji f(x) = −(x − 1 )(x+ 2) w przedziale ⟨− 1;2 ⟩ .

Oblicz wartości pozostałych funkcji trygonometrycznych kąta ostrego α jeżeli sin α = 0 ,6 .

Ukryj Podobne zadania

Oblicz wartości pozostałych funkcji trygonometrycznych kąta ostrego α jeżeli  √-- cosα = -13- 7 .

Wykaż, że dla dowolnego kąta ostrego α , wartość wyrażenia sin 4α + cos2 α+ sin 2α ⋅cos2α jest stała.

Ukryj Podobne zadania

Wykaż, że dla dowolnego kąta ostrego α , wartość wyrażenia − cos4 α− sin 2α − cos2 α⋅sin2 α jest stała.

Wyznacz zbiór wartości funkcji  2 f(x) = x + |logx 201 3|⋅log2013x .

Dany jest trójmian kwadratowy f o współczynniku 2 przy najwyższej potędze x . Wierzchołek paraboli będącej wykresem tego trójmianu ma współrzędne W = (5,− 10) . Oblicz f (15) .

Funkcja kwadratowa  2 f(x ) = ax + bx + 4 , osiąga wartości ujemne wtedy i tylko wtedy, gdy x ∈ (− ∞ ,− 3)∪ (1 ,+ ∞ ) .

  • Wyznacz wartości współczynników a i b .
  • Napisz postać kanoniczną funkcji f .
  • Podaj wzór funkcji kwadratowej g , której wykres otrzymamy przesuwając wykres funkcji f o wektor → u = [2,− 130] .
  • Wyznacz te argumenty x , dla których f (x) ≥ 4 .

Wyznacz resztę z dzielenia wielomianu  2 2005 W (x) = (x − 3x + 1) przez wielomian P(x) = x 2 − 4x + 3 .

Funkcja f określona jest wzorem  -8x- f(x ) = x2+1 .

  • Wykaż, że funkcja f jest nieparzysta.
  • Wykaż (z definicji), że funkcja f w przedziale (1;+ ∞ ) jest malejąca.
  • Wykaż, że funkcja f nie przyjmuje wartości większych od 4.

Funkcja f określona jest wzorem

 ||1 ( 11) || f(x ) = ||-(x + 2)2 x − --- || 3 2

dla każdego x ∈ R . Pochodna funkcji f w punkcie x = 3 jest równa 0. Wyznacz wszystkie wartości parametru m , dla których równanie f (x) = 1 + |m + 1 | 3 ma cztery rozwiązania, których iloczyn jest ujemny.

Ukryj Podobne zadania

Uzasadnij, że jeżeli α jest kątem ostrym, to  2 2 2 1+ (sin α tg α) = tg α+ cos α .

Uzasadnij, że jeżeli α jest kątem ostrym, to  4 2 4 cos α+ 2sin α = 1 + sin α .

Wielomian  4 2 2005 W (x) = (x − 9x + 7) , po wykonaniu potęgowania i dokonaniu redukcji wyrazów podobnych, zapisano w postaci W (x) = anxn + an− 1xn−1 + ...+ a2x2 + a1x+ a0 . Oblicz sumę an + a + ...+ a + a + a n− 1 2 1 0 .

Wielomian  4 3 2 W (x) = x + ax + bx − x+ b przy dzieleniu przez każdy z dwumianów: x + 1 , x − 2 i x + 3 daję tę samą resztę. Wyznacz a i b .

Ukryj Podobne zadania

Dany jest kąt α , dla którego spełniona jest równość  1 sin α − cos α = 2 . Oblicz wartość wyrażenia (sin α+ cosα )2 .

Strona 17 z 20
spinner