Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Kąt ABC (patrz rysunek) ma miarę


PIC


A) 4 0∘ B) 50∘ C) 60 ∘ D) 70∘

Bok AB trójkąta ABC jest średnicą okręgu o środku S , a boki AC i BC przecinają ten okrąg odpowiednio w punktach D i E (zobacz rysunek). Ponadto |∡ABC | = 47∘ i |∡BAC | = 67∘ .


PIC


Zaznaczony na rysunku kąt α jest równy
A) 43∘ B) 2 4∘ C) 23∘ D) 20∘

Punkty B ,C i D leżą na okręgu o środku S i promieniu r . Punkt A jest punktem wspólnym prostych BC i SD , a odcinki AB i SC są równej długości. Miara kąta BCS jest równa 34∘ (zobacz rysunek). Wtedy


PIC


A) α = 12∘ B) α = 17∘ C) α = 2 2∘ D) α = 34∘

*Ukryj

Punkty B ,C i D leżą na okręgu o środku S i promieniu r . Punkt A jest punktem wspólnym prostych BS i CD , a odcinki AD i SD są równej długości. Miara kąta ABC jest równa 54∘ (zobacz rysunek). Wtedy


PIC


A) α = 63∘ B) α = 24∘ C) α = 1 8∘ D) α = 21∘

Punkty B ,C i D leżą na okręgu o środku S i promieniu r . Punkt A jest punktem wspólnym prostych BC i SD , a odcinki AB i SC są równej długości. Miara kąta BCS jest równa 42∘ (zobacz rysunek). Wtedy


PIC


A) α = 14∘ B) α = 42∘ C) α = 2 1∘ D) α = 18∘