Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Prawdopodobieństwo

Wyszukiwanie zadań

Sześcian, którego ściany zostały pomalowane czerwoną farbą, dzielimy 6 płaszczyznami równoległymi do jego ścian na 27 identycznych sześcianików. Losujemy 2 spośród nich.

  • Oblicz prawdopodobieństwo, że łączna liczba czerwonych ścian wylosowanych sześcianików wynosi 3.
  • Oblicz prawdopodobieństwo, że wylosowane sześcianiki mają wspólną ścianę.

Prawdopodobieństwo wystąpienia awarii sieci ciepłowniczej na pewnym osiedlu mieszkaniowym w godzinach porannych pojedynczego dnia jest równe 0,1. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w okresie siedmiu dni wystąpią co najwyżej dwa takie dni, w których nastąpi awaria tej sieci na tym osiedlu w godzinach porannych. Wynik podaj w ułamku dziesiętnym w zaokrągleniu do części setnych.

Ukryj Podobne zadania

Prawdopodobieństwo wystąpienia awarii oświetlenia ulic w pewnym mieście w godzinach wieczornych pojedynczego dnia jest równe 0,2. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w okresie sześciu dni wystąpią co najwyżej trzy takie dni, w których nastąpi awaria oświetlenia ulic w tym mieście w godzinach wieczornych. Wynik podaj w ułamku dziesiętnym w zaokrągleniu do części setnych.

Prawdopodobieństwo wystąpienia awarii sieci ciepłowniczej na pewnym osiedlu mieszkaniowym w godzinach porannych pojedynczego dnia jest równe 0,4. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w okresie dziesięciu dni wystąpi 6, 7 lub 8 awarii tej sieci na tym osiedlu w godzinach porannych. Wynik podaj w ułamku dziesiętnym w zaokrągleniu do części setnych.

W urnie znajduje się N losów, przy czym M z nich to losy wygrywające (M ≤ N ). Wybieramy losowo n losów z urny (n ≤ N ) i niech p oznacza prawdopodobieństwo, że dokładnie m spośród tych losów to losy wygrywające (m ≤ M oraz m ≤ n ). Uzasadnij, że

 (n )⋅(N −n ) p = -m---NM-−m--. (M )

Ze zbioru liczb {1,2,3,4 ,5 ,6,7} losujemy kolejno bez zwracania dwie. Oblicz prawdopodobieństwo, że suma wylosowanych liczb jest podzielna przez 3, jeżeli pierwsza z wylosowanych liczb jest liczbą pierwszą.

Oblicz prawdopodobieństwo warunkowe, że w czterokrotnym rzucie symetryczną sześcienną kostką do gry otrzymamy co najmniej jedną „czwórkę”, pod warunkiem że otrzymamy co najmniej jedną „piątkę”.

Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 15, jeśli wiadomo, że jest ona podzielna przez 18.

Ukryj Podobne zadania

Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 18, jeśli wiadomo, że jest ona podzielna przez 24.

Ze zbioru {1,2,...,10} losujemy dwie różne liczby n i k . Oblicz prawdopodobieństwo, że

( ) ( ) 2n > k ⋅ n . 2 1

W pudełku jest 8 kul, z czego 5 białych i 3 czarne. Do tego pudełka dołożono n kul białych. Doświadczenie polega na losowaniu jednej kuli z tego pudełka. Prawdopodobieństwo, że będzie to kula biała, jest równe 1112 . Oblicz n .

Ukryj Podobne zadania

W pudełku jest 9 kul, z czego 7 białych i 2 czarne. Do tego pudełka dołożono n kul białych. Doświadczenie polega na losowaniu jednej kuli z tego pudełka. Prawdopodobieństwo, że będzie to kula biała, jest równe 2201 . Oblicz n .

W urnie jest 7 kul czarnych i 5 białych. Sześć z nich przekładamy do drugiej urny, początkowo pustej, i z niej losujemy 2 kule bez zwracania. Jakie jest prawdopodobieństwo, że druga z nich będzie biała.

Dane są dwa pojemniki. W pierwszym z nich znajduje się 9 kul: 4 białe, 3 czarne i 2 zielone. W drugim pojemniku jest 6 kul: 2 białe, 3 czarne i 1 zielona. Z każdego pojemnika losujemy po jednej kuli. Oblicz prawdopodobieństwo wylosowania dwóch kul tego samego koloru.

Ukryj Podobne zadania

Dane są dwa pojemniki. W pierwszym z nich znajduje się 9 kul: 2 białe, 5 czarnych i 2 zielone. W drugim pojemniku jest 6 kul: 3 białe, 1 czarna i 2 zielone. Z każdego pojemnika losujemy po jednej kuli. Oblicz prawdopodobieństwo wylosowania dwóch kul tego samego koloru.

Czterdzieści osób usadzono w sposób losowy przy czterech dziesięcioosobowych okrągłych stołach. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że trzy ustalone wcześniej osoby siedzą na trzech sąsiednich miejscach.

Ukryj Podobne zadania

Czterdzieści osób usadzono w sposób losowy przy czterech dziesięcioosobowych okrągłych stołach. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że trzy ustalone wcześniej osoby siedzą przy jednym stole.

Ile razy trzeba rzucać trzema monetami, aby prawdopodobieństwo otrzymania co najmniej raz jednocześnie trzech orłów było większe od 0,8?

Ze zbioru {9,10,11 ,...,4 8} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3.

A i B są takimi zdarzeniami losowymi zawartymi w Ω , że A ⊆ B oraz P (A ) = 0,3 i P(B ) = 0,4 . Oblicz prawdopodobieństwo P(A ∪ B ) .

Spośród wierzchołków graniastosłupa sześciokątnego prostego losujemy jeden wierzchołek z dolnej podstawy i jeden wierzchołek z górnej podstawy. Oblicz prawdopodobieństwo tego, że wylosowane wierzchołki są końcami krawędzi bocznej graniastosłupa.


PIC


Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.

Rodzaj kupionych biletów Liczba osób
ulgowe 76
normalne 41

Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.

Ukryj Podobne zadania

Wśród 93 pracowników pewnego zakładu pracy przeprowadzono badania ankietowe, związane z korzystaniem z dostępnych środków komunikacji miejskiej. W poniższej tabeli przedstawiono informacje o tym, ile osób korzysta z komunikacji tramwajowej, oraz ile osób korzysta z komunikacji autobusowej.

Rodzaj komunikacji miejskiej Liczba osób
tramwajowa 43
autobusowa 47

Uwaga! 28 osób spośród ankietowanych korzysta zarówno z komunikacji autobusowej jak i tramwajowej.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrana osoba spośród ankietowanych nie korzysta z komunikacji miejskiej. Wynik przedstaw w formie nieskracalnego ułamka.

Oblicz prawdopodobieństwo, że losowo wybrana liczba trzycyfrowa ma wszystkie cyfry różne.

W pewnej szkole podstawowej 123 uczniów klas szóstych ma do dyspozycji 3 rodzaje zajęć dodatkowych: kółko matematyczne, kółko humanistyczne i kółko przyrodnicze. W poniższej tabeli przedstawiono informacje o liczbie uczniów uczęszczających na wybrane rodzaje zajęć.

Rodzaj zajęć Liczba uczniów
matematyczne 24
przyrodnicze 18
humanistyczne 20
matematyczne i przyrodnicze 4
matematyczne i humanistyczne 5
przyrodnicze i humanistyczne 6
przyrodnicze, humanistyczne i matematyczne 3

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrany uczeń klasy szóstej uczęszcza tylko na jedne zajęcia pozalekcyjne. Wynik przedstaw w formie nieskracalnego ułamka.

W firmie zatrudniającej 390 pracowników sporządzono zestawienie wszystkich pracowników w wieku przedemerytalnym i okazało się, że wśród nich jest 96 mężczyzn i 45 kobiet. Prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrany mężczyzna pracujący w tej firmie jest w wieku przedemerytalnym jest równe 0,4. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrany pracownik tej firmy jest w wieku przedemerytalnym – pod warunkiem, że jest to kobieta.

Z szuflady, w której znajduje się 10 różnych par rękawiczek wybieramy losowo cztery rękawiczki. Opisz zbiór wszystkich zdarzeń elementarnych, a następnie oblicz prawdopodobieństwa zdarzeń:
A – wśród wylosowanych rękawiczek nie będzie pary,
B – wśród wylosowanych rękawiczek będzie dokładnie jedna para.

Strona 21 z 22
spinner