Wykaż, że jeżeli kąty wewnętrzne trójkąta spełniają warunek to trójkąt ten jest równoramienny.
/Konkursy/Zadania/Geometria
Wysokość trójkąta prostokątnego poprowadzona do przeciwprostokątnej ma długość i jest pięć razy krótsza od obwodu tego trójkąta. Oblicz długości boków trójkąta.
Odległość między środkami okręgów o promieniach 2 i 7 wynosi 13. Prosta jest styczna do obu okręgów w punktach i . Oblicz długość odcinka . Rozważ dwa przypadki.
Na bokach trójkąta równobocznego zbudowano dwa kwadraty w sposób pokazany na rysunku.
Wykaż, że punkty i są wierzchołkami trójkąta prostokątnego.
Na bokach i trójkąta wybrano odpowiednio punkty i . Wykaż, że jeżeli okręgi opisane na trójkątach i są styczne, to punkt leży na okręgu opisanym na trójkącie .
Ramiona kąta ostrego o mierze przecięto prostą prostopadłą do dwusiecznej kąta, która jest odległa o od jego wierzchołka. W ten kąt wpisano dwa okręgi, każdy styczny do obu ramion kąta i prostej . Oblicz odległość środków tych okręgów.
Znaleźć pole kwadratu wpisanego w trójkąt równoboczny o boku 4. Jakie pole ma koło opisane na tym kwadracie?
Czworokąty i są kwadratami. Udowodnij, że .
- Uzasadnij, że suma skierowanych kątów zewnętrznych dowolnego wielokąta (niekoniecznie wypukłego) jest równa .
- Uzasadnij, że suma nieskierowanych kątów zewnętrznych dowolnego wielokąta wypukłego jest równa .
- Wyprowadź wzór na sumę kątów wewnętrznych dowolnego –kąta.
Pole trapezu jest równe , a stosunek długości podstaw trapezu wynosi 2. Przekątne dzielą ten trapez na cztery trójkąty. Oblicz pole każdego z tych trójkątów.
Punkt leży na ramieniu trapezu , w którym . Udowodnij, że .
W trójkącie równoramiennym (patrz rysunek) długość podstawy wynosi , zaś wysokości opuszczone odpowiednio na podstawę i ramię są równe i . Kąt między ramieniem trójkąta i wysokością opuszczoną na podstawę ma miarę .
- Wyraź w zależności od wielkości i .
- Wyraź w zależności od wielkości i .
- Wykaż, że jeśli , to .
Oblicz miary kątów trójkąta, w którym długości boków tworzą ciąg geometryczny, a miary kątów tworzą ciąg arytmetyczny.
Do dwóch okręgów przecinających się w punktach i poprowadzono wspólną styczną , przy czym punkt należy do pierwszego, a punkt do drugiego okręgu. Wykaż, że prosta dzieli odcinek na połowy.
W trójkącie kąt jest dwa razy większy od kąta . Wykaż, że prawdziwa jest równość .
Dany jest trójkąt , który nie jest równoramienny. W tym trójkącie miara kąta jest dwa razy większa od miary kąta . Wykaż, że długości boków tego trójkąta spełniają warunek
Średnica i cięciwa okręgu o środku i promieniu przecinają się w punkcie takim, że . Wykaż, że .
Dany jest okrąg o środku w punkcie i promieniu . Na przedłużeniu cięciwy poza punkt odłożono odcinek równy promieniowi danego okręgu. Przez punkty i poprowadzono prostą. Prosta przecina dany okrąg w punktach i (zobacz rysunek). Wykaż, że jeżeli miara kąta jest równa , to miara kąta jest równa .
Punkt jest punktem wspólnym przekątnych trapezu prostokątnego . Punkt jest punktem wspólnym przekątnej i wysokości opuszczonej na dłuższą podstawę . Wykaż, że .
Okrąg wpisany w trójkąt jest styczny do boków odpowiednio w punktach . Punkty są odpo- wiednio środkami okręgów wpisanych w trójkąty . Dowieść, że punkty i są symetryczne względem prostej .
Na zewnątrz kwadratu na bokach i zbudowano trójkąty równoboczne i . Uzasadnij, że proste i są prostopadłe.
Wykaż, że punkt przecięcia przekątnych trapezu leży na prostej przechodzącej przez środki jego podstaw.