Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Geometria analityczna

Wyszukiwanie zadań

Dane są wierzchołki trójkąta ABC : A(2 ,2) , B(9 ,5) i C(3,9) . Z wierzchołka C poprowadzono wysokość tego trójkąta, która przecina bok AB w punkcie D . Wyznacz równanie prostej przechodzącej przez punkt D i równoległej do boku BC .

W kartezjańskim układzie współrzędnych (x,y ) punkt C = (7,− 2) jest wierzchołkiem trójkąta ABC . Prosta k o równaniu y+ 2x+ 3 = 0 zawiera dwusieczną kąta BAC tego trójkąta. Okrąg O o równaniu (x + 1)2 + (y + 1)2 = 1 6 jest wpisany w ten trójkąt. Wyznacz współrzędne wierzchołków A i B trójkąta ABC .

Napisz równanie okręgu, którego środek należy do osi Ox , i który przechodzi przez punkty A (2,3) i B (5,2) .

Ukryj Podobne zadania

Napisz równanie okręgu, którego środek leży na prostej y = − 2x , i który przechodzi przez punkty A = (− 4,− 5) i B (− 2,− 1) .

Wyznacz równanie okręgu przechodzącego przez punkty A = (− 5,3) i B = (0,6) , którego środek leży na prostej o równaniu x− 3y + 1 = 0 .

Wyznacz odległość punktu P = (3,− 1) od prostej o równaniu  -5 y = 12x + 2 .

Wierzchołkami trójkąta ABC są punkty A = (−4 ,1),B = (5,− 2),C = (3,6) . Oblicz długość środkowej AD .

Ukryj Podobne zadania

Wierzchołkami trójkąta ABC są punkty A = (− 6 ,− 2 ),B = (− 5,2),C = (− 1,4) . Oblicz długość środkowej AD .

Dana jest parabola o równaniu  2 y = −x + 9 . Na tej paraboli leży punkt P o dodatnich współrzędnych. Wyznacz współrzędne tego punktu tak, by styczna do paraboli w punkcie P ograniczała wraz z osiami układu współrzędnych trójkąt o najmniejszym polu.

Ukryj Podobne zadania

Dana jest funkcja  2 f(x ) = x − 1 określona dla x ∈ (− ∞ ,0) . W jakim punkcie wykresu tej funkcji należy poprowadzić styczną tak, aby trójkąt ograniczony tą styczną i osiami układu współrzędnych miał najmniejsze pole? Oblicz to pole.

Do okręgów o równaniach  2 2 29 x + 7x + y + 5y+ 2 = 0 i  2 2 13- x − x + y − 3y − 2 = 0 poprowadzono wspólną styczną. Oblicz długość odcinka łączącego punkty styczności. Rozważ wszystkie możliwości.

W trapezie ABCD , w którym AB ∥ CD , dane są wierzchołki A = (1,1),B = (2,4) oraz punkt przecięcia przekątnych S = (− 1,3) . Pole trapezu jest równe 36.

  • Oblicz długość podstawy CD .
  • Wyznacz współrzędne wierzchołków C i D .

Dany jest prostokąt o wierzchołkach A = (− 2,− 2),B = (1,− 2),C = (1,1),D = (− 2,1) . Wyznacz wszystkie wartości współczynnika b , dla których prosta o równaniu y = 2x + b ma co najmniej jeden punkt wspólny z prostokątem ABCD .

Prosta przechodząca przez punkty A = (8,− 6) i B = (5 ,15) jest styczna do okręgu o środku w punkcie O = (0,0) . Oblicz promień tego okręgu i współrzędne punktu styczności tego okręgu z prostą AB .

Ukryj Podobne zadania

Prosta przechodząca przez punkty A = (− 9,− 4) i B = (− 6,17) jest styczna do okręgu o środku w punkcie O = (− 1 ,2 ) . Oblicz promień tego okręgu i współrzędne punktu styczności tego okręgu z prostą AB .

Punkty K , L , M są środkami boków BC ,CA i AB trójkąta ABC . Wykaż, że

− → − → −→ → AK + BL + CM = 0.

W kartezjańskim układzie współrzędnych dany jest romb ABCD , którego bok CD i przekątna AC są zawarte w prostych o równaniach y − x − 1 = 0 i y − 3x + 1 = 0 odpowiednio. Promień okręgu wpisanego w romb ABCD jest równy 2 √ 2- , a środek tego okręgu leży poniżej osi Ox . Oblicz współrzędne punktu styczności okręgu wpisanego w romb ABCD z jego bokiem BC .

Zapisz równanie prostej przechodzącej przez punkt A (1,1) i równoległej do prostej danej równaniem 3x + y + 1 = 0 .

Ukryj Podobne zadania

Zapisz równanie prostej przechodzącej przez punkt A (1,1) i równoległej do prostej danej równaniem x − 2y − 3 = 0 .

Dany jest trójkąt ABC o wierzchołkach A = (1;4) , B = (5;2) , C = (3 ;− 3 ) .

  • Napisz równanie wysokości opuszczonej z wierzchołka C na bok AB .
  • Napisz równanie środkowej boku BC .
  • Napisz równanie symetralnej boku BC .
  • Oblicz obwód i pole tego trójkąta.

Wyznacz równanie okręgu, który jest symetryczny do okręgu o równaniu

 2 2 x + 10x + y − 2y + 1 9 = 0

względem prostej y = 2x + 1 .

Wiadomo, że okrąg jest styczny do prostej o równaniu y = 2x − 3 w punkcie A = (2,1) i styczny do prostej o równaniu y = 12x+ 9 w punkcie B = (− 4,7) . Oblicz promień tego okręgu.

W kartezjańskim układzie współrzędnych (x ,y) prosta l o równaniu x − y − 2 = 0 przecina parabolę o równaniu y = 4x2 − 7x + 1 w punktach A oraz B . Odcinek AB jest średnicą okręgu O . Punkt C leży na okręgu O nad prostą l , a kąt BAC jest ostry i ma miarę α taką, że tg α = 1 3 (zobacz rysunek).


ZINFO-FIGURE


Oblicz współrzędne punktu C .

Ukryj Podobne zadania

W kartezjańskim układzie współrzędnych (x ,y) prosta l o równaniu x − y + 4 = 0 przecina parabolę o równaniu y = − 4x2 − 15x − 11 w punktach A oraz B . Odcinek AB jest średnicą okręgu O . Punkt C leży na okręgu O poniżej prostej l , a kąt ABC jest ostry i ma miarę α taką, że  1 tg α = 3 (zobacz rysunek).


ZINFO-FIGURE


Oblicz współrzędne punktu C .

Wykaż, że trójkąt ABC o wierzchołkach A = (5 ;−4 ) , B = (3;2) , C = (2;− 5) jest prostokątny.

Ukryj Podobne zadania

Wykaż, że trójkąt ABC o wierzchołkach A = (4;− 3) , B = (− 1;2 ) , C = (7;0) jest prostokątny.

Wykaż, że trójkąt ABC o wierzchołkach A = (1;2) , B = (6;3) , C = (4 ;5) jest prostokątny.

Wykaż, że trójkąt ABC o wierzchołkach A = (− 3;4) , B = (− 7;− 8) , C = (3;2) jest prostokątny.

Wykaż, że trójkąt o wierzchołkach A = (1 ,2 ),B = (− 2,− 4),C = (4,− 7) jest trójkątem prostokątnym.

Punkt A = (23,22) jest wierzchołkiem trójkąta prostokątnego o polu 7030 . Prosta AC zawiera przeciwprostokątną tego trójkąta, a prosta zwierająca przyprostokątną AB ma równanie 3y − 4x + 26 = 0 . Środek okręgu wpisanego w trójkąt ABC ma współrzędne S = (−2 ,−3 ) . Oblicz współrzędne wierzchołków B i C tego trójkąta.

Wyznacz współrzędne środka okręgu opisanego na kwadracie, którego jeden z boków jest zawarty w prostej o równaniu y = 2x − 2 , a punkt A = (1,5) jest jego wierzchołkiem. Rozważ wszystkie przypadki.

Strona 26 z 27
spinner