Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup/Prawidłowy czworokątny/Różne

Wyszukiwanie zadań

Dany jest ostrosłup prawidłowy czworokątny o krawędzi bocznej dwa razy dłuższej od krawędzi podstawy.

  1. Wyznacz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa.
  2. Wyznacz długość krawędzi ostrosłupa, tak aby pole jego powierzchni bocznej wynosiło  √ --- 36 1 5 .

Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego jest równe 80 cm 2 , a pole jego powierzchni całkowitej wynosi 144 cm 2 . Oblicz długość krawędzi podstawy i długość krawędzi bocznej tego ostrosłupa. Zapisz obliczenia.

W ostrosłup prawidłowy czworokątny wpisano sześcian tak, że jego cztery wierzchołki należą do wysokości ścian bocznych ostrosłupa, a pozostałe do płaszczyzny podstawy. Oblicz stosunek objętości ostrosłupa do objętości sześcianu jeżeli kąt nachylenia ściany bocznej do płaszczyzny podstawy jest równy α .

W ostrosłup prawidłowy czworokątny wpisano sześcian tak, że jego cztery wierzchołki należą do krawędzi bocznych ostrosłupa, a pozostałe do płaszczyzny podstawy. Oblicz długość krawędzi sześcianu, jeżeli wysokość ostrosłupa jest równa H , a długość jego krawędzi podstawy jest równa a .

Można przyjąć, że piramida Cheopsa jest ostrosłupem prawidłowym czworokątnym o krawędzi podstawy 233 m. Długość cienia piramidy w momencie, gdy promienie słoneczne padają prostopadle do jednej ze ścian wynosi 67,5 m. Wyznacz wysokość piramidy.

Odległość środka podstawy ostrosłupa prawidłowego czworokątnego od krawędzi bocznej równa się a , a kąt płaski ściany bocznej przy wierzchołku ostrosłupa równa się 2α . Oblicz wysokość ostrosłupa.

W ostrosłupie prawidłowym czworokątnym wysokości przeciwległych ścian bocznych, poprowadzone z wierzchołka ostrosłupa, są do siebie prostopadłe.

  • Oblicz sinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.
  • Jakim procentem objętości sześcianu, którego krawędź ma długość równą długości krawędzi podstawy danego ostrosłupa, jest objętość tego ostrosłupa?
spinner