Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Dany jest okrąg o0 o równaniu  2 2 (x − 3) + (y− 1) = 1 . W pierwszej „ćwiartce” układu współrzędnych istnieją dwa okręgi o1, o2 styczne zewnętrznie do okręgu o0 i jednocześnie styczne do obu osi układu współrzędnych. Oblicz odległość środków okręgów o 1 oraz o 2 .

*Ukryj

Dany jest okrąg o0 o równaniu  2 2 (x + 2) + (y − 6 ) = 4 . W drugiej „ćwiartce” układu współrzędnych istnieją dwa okręgi o1, o2 styczne zewnętrznie do okręgu o0 i jednocześnie styczne do obu osi układu współrzędnych. Oblicz odległość środków okręgów o 1 oraz o 2 .

Dane są dwa okręgi o równaniach  2 2 (x − 3) + y = 1 6 i  2 2 2 x + (y− m) = m , m > 0 . Wyznacz wszystkie wartości parametru m , dla których te okręgi mają jeden punkt wspólny.

Dany jest okrąg o środku w punkcie (1 5,− 35) i promieniu 16. Sprawdź czy okrąg ten jest styczny do

  • prostej 6x + 8y + 30 = 0 ,
  • okręgu o środku w punkcie (2 3,− 20) i promieniu 2?

Uzasadnij swoją odpowiedź.

Okrąg o środku w punkcie S = (0,5) ma promień długości 1 i jest styczny do okręgu o środku A i promieniu długości 10. Punkt A leży na osi Oy . Jakie ma współrzędne?

Wyznacz równanie okręgu stycznego wewnętrznie do okręgu o równaniu (x − 2)2 + y2 = 4 i do prostej y = 0 , którego środek ma współrzędne różnych znaków i leży na wykresie funkcji y = −x 3 + 14 .

Dane są okręgi o równaniach  2 2 x + y − 12x − 8y + 43 = 0 i x 2 + y2 − 2ax + 4y+ a2 − 77 = 0 . Wyznacz wszystkie wartości parametru a , dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki.

*Ukryj

Dane są okręgi o równaniach  2 2 x + y + 2x + 10y + 22 = 0 i x 2 + y2 − 6x + 2ay + a2 − 27 = 0 . Wyznacz wszystkie wartości parametru a , dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki.