Długość ramienia trapezu jest równa , a odległość od niego środka przeciwległego ramienia jest równa . Wyznacz pole trapezu.
/Szkoła średnia/Geometria/Planimetria/Czworokąt/Trapez/Dowolny
Przekątne trapezu przecinają się w punkcie , jego podstawy mają długości i , a wysokość trapezu ma długość 8. Punkt jest środkiem odcinka (zobacz rysunek).
Oblicz pole trójkąta .
Krótsza podstawa trapezu ma długość 2, a ramiona długości i 4 tworzą z dłuższą podstawą kąty o miarach i . Oblicz pole trapezu.
Krótsza podstawa trapezu ma długość , a ramiona długości i 6 tworzą z dłuższą podstawą kąty o miarach i odpowiednio. Oblicz pole trapezu.
Wykaż, że w dowolnym trapezie suma długości podstaw jest mniejsza od sumy długości przekątnych.
Wykaż, że w dowolnym trapezie suma długości ramion jest mniejsza od sumy długości przekątnych.
Przekątne dzielą trapez na cztery trójkąty. Wykaż, że pola tych trójkątów, w których jeden z boków jest ramieniem trapezu, są równe.
Przekątne dzielą trapez na cztery trójkąty. Wykaż, że stosunek pól trójkątów takich, że bokiem jednego jest ramię trapezu, a bokiem drugiego jest podstawa trapezu, jest równy stosunkowi długości podstaw trapezu.
Przekątne dzielą trapez na cztery trójkąty. Wykaż, że stosunek pól tych trójkątów, w których jeden z boków jest podstawą trapezu, jest równy stosunkowi kwadratów długości podstaw trapezu.
W trapezie długość podstawy jest równa 18, a długości ramion trapezu i są odpowiednio równe 25 i 15. Kąty i , zaznaczone na rysunku, mają równe miary. Oblicz obwód tego trapezu.
Podstawy trapezu mają długości 10 i 6. Wiedząc, że suma miar kątów wewnętrznych przy dłuższej podstawie jest równa , oblicz długość odcinka łączącego środki podstaw trapezu.
Podstawy trapezu mają długości i . Na ramionach trapezu wybrano punkty i w ten sposób, że odcinek jest równoległy do podstaw i dzieli trapez na dwa trapezy o równych polach. Oblicz długość odcinka .
Jeżeli skrócimy wysokość trapezu o polu o 2 cm i jednocześnie wydłużymy każdą z jego podstaw o 6 cm, to pole trapezu nie ulegnie zmianie. Wyznacz długość wysokości trapezu (przed zmianą).
W trapezie () przekątne i przecinają się w punkcie takim, że . Pole trójkąta jest równe 10. Uzasadnij, że pole trapezu jest równe 72.
W trapezie () przekątne i przecinają się w punkcie takim, że . Pole trójkąta jest równe 2. Uzasadnij, że pole trapezu jest równe 50.
Czworokąt jest trapezem o podstawach i . Wykaż że
W pewnym trapezie kąty przy dwóch przeciwległych wierzchołkach mają miary oraz . Jedno z ramion tego trapezu ma długość . Wyznacz różnicę długości podstaw tego trapezu.
Podstawy trapezu mają długości i . Oblicz długość odcinka łączącego środki ramion trapezu.
Proste zawierające ramiona i trapezu przecinają się w punkcie . Dane są: , oraz obwód trójkąta równy . Oblicz obwód trójkąta .
Przekątne trapezu przecinają się w punkcie . Przez punkt poprowadzono prostą równoległą do podstaw trapezu, która przecina ramiona trapezu w punktach i . Wykaż, że .
W trapezie o podstawach i przez punkt przecięcia się przekątnych poprowadzono dwie proste równoległe do boków i . Prosta równoległa do boku przecina bok w punkcie , a prosta równoległa do boku przecina bok w punkcie . Wykaż, że .
W trapezie o podstawach i dane są długości przekątnych i oraz pola i . Punkty i są środkami odpowiednio przekątnych i .
Oblicz pole trapezu .
W trapezie o podstawach i dane są długości przekątnych i oraz pola i . Punkty i są środkami odpowiednio przekątnych i .
Oblicz pole trójkąta .
Pole trapezu jest równe , a stosunek długości jego podstaw wynosi . Przekątne dzielą trapez na cztery trójkąty. Oblicz pole każdego z tych trójkątów.
W trapezie mamy oraz . Punkt jest środkiem ramienia , a punkt jest punktem wspólnym prostych . Udowodnij, że pole trójkąta jest równe polu trójkąta .
Dany jest trapez o podstawach i , w którym . Okrąg opisany na trójkącie przecina prostą w takim punkcie , że i . Oblicz długość podstawy trapezu .
Oblicz pole trapezu , którego podstawy mają długości i , a ramiona mają długości i .