Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Udowodnij, że jeżeli a ≥ b > 0 to (a+b-) √ --- (a−b-)2- 2 − ab ≥ 8a .

Udowodnij, że jeżeli a > 0 to dla wszystkich x ∈ R spełniona jest nierówność ax + a−x ≥ 2 .

Udowodnij, że dla każdych dwóch liczb rzeczywistych x ≥ 1 i y ≥ 1 prawdziwa jest nierówność

(x+ y)(x2 − xy + y2 + 3) ≥ 2(x 2 + xy + y2 + 1).
*Ukryj

Udowodnij, że dla każdych dwóch liczb rzeczywistych x ≥ 1 i y ≥ 1 prawdziwa jest nierówność

x (x2 − 2x + 3)+ y(y2 − 2y + 3) ≥ 2xy + 2.

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x2y2 + 2x 2 + 2y 2 − 8xy + 4 > 0.
*Ukryj

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x 2y2 + 3x2 + 3y2 − 12xy + 9 > 0.

Wykaż, że dla dowolnych dodatnich liczb rzeczywistych a,b prawdziwa jest nierówność

 ∘ --- ∘ --- √ -- √ -- a2- b2- a + b ≤ b + a .

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej y prawdziwa jest nierówność

x(x − 1 )+ y (y− 1) ≥ xy − 1.
*Ukryj

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej y prawdziwa jest nierówność

x(x − 3 )+ y (y− 3) ≥ xy − 9.