Trójkąt prostokątny równoramienny obrócono dookoła jednej z przyprostokątnych. Objętość tak otrzymanej bryły jest równa . Średnica podstawy bryły ma długość
A) 6 B) C) 12 D)
/Szkoła średnia/Zadania testowe
Trójkąt prostokątny równoramienny obrócono dookoła jednej z przyprostokątnych. Objętość tak otrzymanej bryły jest równa . Średnica podstawy bryły ma długość
A) 9 B) C) D) 18
Trójkąt prostokątny równoramienny obrócono dookoła jednej z przyprostokątnych. Objętość tak otrzymanej bryły jest równa . Średnica podstawy bryły ma długość
A) 6 B) C) 3 D)
Punkty i są punktami styczności okręgu z osiami układu współrzędnych. Które z poniższych równań opisuje ten okrąg?
A) B)
C) D)
Punkty i są punktami styczności okręgu z osiami układu współrzędnych. Które z poniższych równań opisuje ten okrąg?
A) B)
C) D)
Funkcja liniowa jest rosnąca i ma dodatnie miejsce zerowe. Stąd wynika, że
A) i B) i C) i D) i
Funkcja liniowa jest malejąca i ma dodatnie miejsce zerowe. Stąd wynika, że
A) i B) i C) i D) i
Wartością wyrażenia dla jest liczba:
A) B) C) D)
Ciąg jest rosnącym ciągiem geometrycznym o ilorazie , gdzie i . Zatem:
A) lub B) C) D)
Trzeci wyraz pewnego ciągu geometrycznego jest równy 6, a szósty wyraz ma wartość . Iloraz tego ciągu jest równy:
A) B) C) D)
Liczba jest równa
A) B) C) D) 2
Klient banku wypłacił z bankomatu kwotę 1040 zł. Bankomat wydał kwotę w banknotach o nominałach 20 zł, 50 zł oraz 100 zł. Banknotów 100–złotowych było dwa razy więcej niż 50–złotowych, a banknotów 20–złotowych było o 2 mniej niż 50–złotowych. Niech oznacza liczbę banknotów 50–złotowych, a – liczbę banknotów 20–złotowych, które otrzymał ten klient. Poprawny układ równań prowadzący do obliczenia liczb i to
A) B)
C) D)
Tomek ma w skarbonce wyłącznie monety dwuzłotowe i pięciozłotowe. W sumie ma w skarbonce 351 zł. Gdyby dołożył do skarbonki 10 monet pięciozłotowych i dwie monety dwuzłotowe, to miałby w skarbonce dwa razy więcej monet dwuzłotowych, niż monet pięciozłotowych. Jeżeli oznaczymy przez liczbę monet pięciozłotowych, a przez liczbę monet dwuzłotowych w skarbonce Tomka, to liczby i spełniają układ równań
A) B)
C) D)
Klient banku wypłacił z bankomatu kwotę 1680 zł. Bankomat wydał kwotę w banknotach o nominałach 20 zł, 50 zł oraz 100 zł. Banknotów 100–złotowych było o 50% więcej niż 50–złotowych, a banknotów 20–złotowych było o 50% mniej niż 50–złotowych. Niech oznacza liczbę banknotów 50–złotowych, a – liczbę banknotów 20–złotowych, które otrzymał ten klient. Poprawny układ równań prowadzący do obliczenia liczb i to
A) B)
C) D)
Liczba rozwiązań równania jest równa
A) 6 B) 4 C) 2 D) 5
Przedstawione na rysunku trójkąty są podobne.
Wówczas
A) B) C) D)
Przedstawione na rysunku trójkąty i są podobne. Bok trójkąta ma długość
A) 14 B) 16 C) D) 12
Przedstawione na rysunku trójkąty i są podobne. Bok trójkąta ma długość
A) 8 B) 8,5 C) 9,5 D) 10
Wszystkich różnych liczb naturalnych trzycyfrowych, w których zapisie dziesiętnym przynajmniej jedna cyfra występuje dwa razy jest
A) 252 B) 180 C) 171 D) 396
Rozwiązaniem równania jest
A) B) C) D)
Rozwiązaniem równania jest
A) B) C) D)
Dany jest trapez , w którym , , i (zobacz rysunek).
Stąd wynika, że cosinus zaznaczonego na rysunku kąta jet równy
A) B) C) D)
Dana jest nierówność kwadratowa
z niewiadomą i parametrem . Rozwiązaniem tej nierówności jest przedział . Liczba jest równa
A) B) 2 C) D) 3
Dana jest nierówność kwadratowa
z niewiadomą i parametrem . Rozwiązaniem tej nierówności jest przedział . Liczba jest równa
A) B) 2 C) D) 3
Punkty i są środkami boków i prostokąta . Boki prostokąta są równoległe do osi układu współrzędnych. Pole prostokąta jest równe.
A) 48 B) 20 C) 192 D) 400
Funkcja przyporządkowuje każdej liczbie naturalnej większej od 1 sumę jej cyfr. Liczba dla której prawdziwa jest równość
może być równa
A) 2114 B) 3115 C) 1611 D) 4103
Pięć spośród sześciu różnokolorowych kul wkładamy do pięciu ponumerowanych szuflad tak, że w każdej szufladzie znajduje się jedna kula. Na ile różnych sposobów można to zrobić?
A) 120 B) 720 C) 24 D) 126
Ciąg spełnia warunek dla . Wówczas
A) B) C) D)
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej określonej wzorem .
Współczynniki i spełniają warunki:
A) B) C) D)
Na rysunku przedstawiono fragment wykresu funkcji kwadratowej określonej wzorem .
Współczynniki i spełniają warunki:
A) B) C) D)
Na rysunku jest przedstawiona prosta zawierająca przekątną rombu oraz wierzchołki i tego rombu.
Wskaż równanie prostej zawierającej przekątną tego rombu.
A) B) C) D)
Jeśli jest kątem ostrym i , to jest równy
A) B) C) D)
Jeśli jest kątem ostrym i , to jest równy
A) B) C) D)
Jeśli jest kątem ostrym i , to jest równy
A) B) C) D)