Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe

Wyszukiwanie zadań

Trójkąt prostokątny równoramienny obrócono dookoła jednej z przyprostokątnych. Objętość tak otrzymanej bryły jest równa 7 2π . Średnica podstawy bryły ma długość
A) 6 B) 2√39- C) 12 D)  √3-- 4 9

Ukryj Podobne zadania

Trójkąt prostokątny równoramienny obrócono dookoła jednej z przyprostokątnych. Objętość tak otrzymanej bryły jest równa 2 43π . Średnica podstawy bryły ma długość
A) 9 B) 3√39- C) 6√39- D) 18

Trójkąt prostokątny równoramienny obrócono dookoła jednej z przyprostokątnych. Objętość tak otrzymanej bryły jest równa 9 π . Średnica podstawy bryły ma długość
A) 6 B) √39- C) 3 D)  √3-- 2 9

Punkty M = (2,0) i N = (0,− 2) są punktami styczności okręgu z osiami układu współrzędnych. Które z poniższych równań opisuje ten okrąg?
A) (x − 2)2 + (y − 2)2 = 4 B)  2 2 (x − 2) + (y + 2) = 4
C)  2 2 (x + 2) + (y + 2) = 4 D) (x + 2)2 + (y − 2)2 = 4

Ukryj Podobne zadania

Punkty M = (− 2,0) i N = (0,2) są punktami styczności okręgu z osiami układu współrzędnych. Które z poniższych równań opisuje ten okrąg?
A) (x − 2)2 + (y − 2)2 = 4 B)  2 2 (x − 2) + (y + 2) = 4
C)  2 2 (x + 2) + (y + 2) = 4 D) (x + 2)2 + (y − 2)2 = 4

Ukryj Podobne zadania

Funkcja liniowa f(x) = ax+ b jest malejąca i ma dodatnie miejsce zerowe. Stąd wynika, że
A) a > 0 i b > 0 B) a < 0 i b < 0 C) a < 0 i b > 0 D) a > 0 i b < 0

Wartością wyrażenia  2 3 2x − 4x dla x = − 2 jest liczba:
A) 17 12 B) 612 C) − 91 2 D) 91 2

Ciąg (an ) jest rosnącym ciągiem geometrycznym o ilorazie q , gdzie a 2 = 7 i a6 = 5 67 . Zatem:
A) q = 3 lub q = − 3 B) q = − 3 C) q = 3 D) q = 1

Ukryj Podobne zadania

Trzeci wyraz pewnego ciągu geometrycznego jest równy 6, a szósty wyraz ma wartość (− 0,75) . Iloraz tego ciągu jest równy:
A) − 18 B) − 16 C) − 1 3 D) − 1 2

Klient banku wypłacił z bankomatu kwotę 1040 zł. Bankomat wydał kwotę w banknotach o nominałach 20 zł, 50 zł oraz 100 zł. Banknotów 100–złotowych było dwa razy więcej niż 50–złotowych, a banknotów 20–złotowych było o 2 mniej niż 50–złotowych. Niech x oznacza liczbę banknotów 50–złotowych, a y – liczbę banknotów 20–złotowych, które otrzymał ten klient. Poprawny układ równań prowadzący do obliczenia liczb x i y to
A) { 2 0y+ 50x + 100 ⋅2x = 1040 y = x − 2 B) { 20y+ 50x + 50x ⋅2 = 1040 y = x − 2
C) { 20y + 50x + 100 ⋅2x = 1040 x = y− 2 D) { 20y+ 50x + 50x ⋅2 = 1040 x = y − 2

Ukryj Podobne zadania

Tomek ma w skarbonce wyłącznie monety dwuzłotowe i pięciozłotowe. W sumie ma w skarbonce 351 zł. Gdyby dołożył do skarbonki 10 monet pięciozłotowych i dwie monety dwuzłotowe, to miałby w skarbonce dwa razy więcej monet dwuzłotowych, niż monet pięciozłotowych. Jeżeli oznaczymy przez x liczbę monet pięciozłotowych, a przez y liczbę monet dwuzłotowych w skarbonce Tomka, to liczby x i y spełniają układ równań
A) { 5y+ 2x = 35 1 y+ 2 = 2(x + 10) B) { 5x+ 2y = 35 1 2(x+ 10) = y + 2
C) { 5x + 2y = 351 x + 1 0 = 2(y + 2) D) { 5y+ 2x = 35 1 y+ 10 = 2(x + 2)

Klient banku wypłacił z bankomatu kwotę 1680 zł. Bankomat wydał kwotę w banknotach o nominałach 20 zł, 50 zł oraz 100 zł. Banknotów 100–złotowych było o 50% więcej niż 50–złotowych, a banknotów 20–złotowych było o 50% mniej niż 50–złotowych. Niech x oznacza liczbę banknotów 50–złotowych, a y – liczbę banknotów 20–złotowych, które otrzymał ten klient. Poprawny układ równań prowadzący do obliczenia liczb x i y to
A) { 2 0y+ 50x + 100 ⋅(x + 50% ) = 1 680 y = 0,5x B) { 20y + 50x + 150 ⋅(x + 50% ) = 16 80 y = x− 50%
C) { 20y + 50x + 150x = 1680 x = y− 50% D) { 20y+ 50x + 150x = 1680 y = 0,5x

Liczba rozwiązań równania  2 |3 − |1 − x || = 2 jest równa
A) 6 B) 4 C) 2 D) 5

Ukryj Podobne zadania

Przedstawione na rysunku trójkąty ABC i P QR są podobne. Bok AB trójkąta ABC ma długość


PIC


A) 14 B) 16 C) 1313 D) 12

Przedstawione na rysunku trójkąty ABC i P QR są podobne. Bok AB trójkąta ABC ma długość


PIC


A) 8 B) 8,5 C) 9,5 D) 10

Wszystkich różnych liczb naturalnych trzycyfrowych, w których zapisie dziesiętnym przynajmniej jedna cyfra występuje dwa razy jest
A) 252 B) 180 C) 171 D) 396

Rozwiązaniem równania 3x−1- 5−3x- 7x+1 = 2−7x jest
A) x = − 719 B) x = 319 C) x = − 3- 19 D) x = 3- 46

Ukryj Podobne zadania

Rozwiązaniem równania 2x−1- 5−2x- 3x+1 = 2−3x jest
A) x = 76 B) x = − 76 C) x = 1 2 D) x = − 1 2

Dany jest trapez ABCD , w którym |AB | = 26 , |BC | = 9 , |CD | = 14 i ∡ABC = 90∘ (zobacz rysunek).


PIC


Stąd wynika, że cosinus zaznaczonego na rysunku kąta α jet równy
A) 3 5 B) − 4 5 C) − 3 5 D) 4 5

Dana jest nierówność kwadratowa

(3x − 9)(x + k ) < 0

z niewiadomą x i parametrem k ∈ R . Rozwiązaniem tej nierówności jest przedział (− 2,3) . Liczba k jest równa
A) (− 2) B) 2 C) (− 3) D) 3

Ukryj Podobne zadania

Dana jest nierówność kwadratowa

(3x − 6)(x + k ) < 0

z niewiadomą x i parametrem k ∈ R . Rozwiązaniem tej nierówności jest przedział (− 3,2) . Liczba k jest równa
A) (− 2) B) 2 C) (− 3) D) 3

Punkty K = (− 1,− 3) i L = (7 ,−9 ) są środkami boków AB i BC prostokąta ABCD . Boki prostokąta ABCD są równoległe do osi układu współrzędnych. Pole prostokąta ABCD jest równe.
A) 48 B) 20 C) 192 D) 400

Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 sumę jej cyfr. Liczba x dla której prawdziwa jest równość

f(21 5)+ f(314) − f(x ) = 2f(x) − f(2 45)

może być równa
A) 2114 B) 3115 C) 1611 D) 4103

Pięć spośród sześciu różnokolorowych kul wkładamy do pięciu ponumerowanych szuflad tak, że w każdej szufladzie znajduje się jedna kula. Na ile różnych sposobów można to zrobić?
A) 120 B) 720 C) 24 D) 126

Ciąg (an) spełnia warunek  √ ------- an−3 = 2n + 2 dla n ≥ 4 . Wówczas
A)  √ -- a5 = 9 2 B)  √ -- a5 = 3 2 C)  √ -- a5 = 2 3 D)  √ -- a5 = 4 3

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f określonej wzorem f(x ) = x2 + bx + c .


PIC


Współczynniki b i c spełniają warunki:
A) b < 0 , c > 0 B) b < 0, c < 0 C) b > 0 , c > 0 D) b > 0 , c < 0

Ukryj Podobne zadania

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f określonej wzorem f(x ) = ax2 + bx + c .


PIC


Współczynniki b i c spełniają warunki:
A) b < 0 , c > 0 B) b < 0, c < 0 C) b > 0 , c > 0 D) b > 0 , c < 0

Na rysunku jest przedstawiona prosta zawierająca przekątną AC rombu ABCD oraz wierzchołki A = (− 2,1) i C = (4,5) tego rombu.


PIC


Wskaż równanie prostej zawierającej przekątną BD tego rombu.
A) y = − 23x+ 131 B) y = − 32 x+ 4 C) y = −x + 4 D) y = − 3x + 9 2 2

Jeśli α jest kątem ostrym i  √ -- sin α = 3 5 − 6 , to cosα jest równy
A) √ -- 5 B) √ --- 3 6 C) ∘ ----------- 36√ 5 − 80 D) ∘ ----------- 80 − 36√ 5

Ukryj Podobne zadania

Jeśli α jest kątem ostrym i  √ -- sin α = 2 5 − 4 , to cosα jest równy
A) ∘ ---√------- 1 6 5− 35 B) ∘ ---√------- 1 6 5+ 28 C)  ---------- ∘ √ -- 2 8 5− 6 D)  ----------- ∘ √ -- 28 5 − 12

Jeśli α jest kątem ostrym i  √ -- sin α = 3 3 − 5 , to cosα jest równy
A) √ -- 3 B) ∘ --√-------- 30 3 − 51 C)  ----------- ∘ √ -- 3 6 3− 50 D)  ----------- ∘ √ -- 80 − 36 3

Strona 154 z 184
spinner