Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria

Wyszukiwanie zadań

Dany jest okrąg o środku w punkcie O . Prosta k jest styczna do okręgu w punkcie A .


PIC


Miara kąta α jest równa
A) 40∘ B) 3 0∘ C) 25∘ D) 20∘

Ukryj Podobne zadania

Dany jest okrąg o środku w punkcie O . Prosta k jest styczna do okręgu w punkcie A .


PIC


Miara kąta α jest równa
A) 40∘ B) 3 0∘ C) 50∘ D) 20∘

Przeciwległe wierzchołki kwadratu mają współrzędne A = (−5 ,−1 ),C = (1,3 ) . Promień okręgu wpisanego w ten kwadrat jest równy
A) √ --- 13 B)  √ --- 2 13 C) 1 √ 26- 2 D) √ 2-6

Ukryj Podobne zadania

Przeciwległe wierzchołki kwadratu mają współrzędne A = (2,− 3),C = (− 4,1 ) . Średnica okręgu wpisanego w ten kwadrat jest równa
A) √ --- 26 B)  √ --- 2 13 C) 1 √ 26- 2 D) √ 1-3

Przeciwległe wierzchołki kwadratu mają współrzędne A = (−5 ,−6 ),C = (2,5 ) . Promień okręgu wpisanego w ten kwadrat jest równy
A) √ --- 85 B)  √ --- 1 85 2 C) √ ---- 17 0 D) 1 √ ---- 2 170

Przeciwległe wierzchołki kwadratu mają współrzędne A = (−2 ,−2 ),C = (4,0 ) . Promień okręgu wpisanego w ten kwadrat jest równy
A) √ -- 5 B)  √ -- 2 5 C) √ 10- D) 1√ 1-0 2

Z prostokąta ABCD o polu 30 wycięto trójkąt AOD (tak jak na rysunku). Pole zacieniowanej figury jest równe


PIC


A) 7,5 B) 15 C) 20 D) 25

Ukryj Podobne zadania

Z prostokąta ABCD o polu 28 wycięto trójkąt CEF , przy czym punkty E i F są środkami odpowiednio boków AB i BC .


PIC


Pole zacieniowanej figury jest równe
A) 3,5 B) 21 C) 25 D) 24,5

Z trójkąta ABC o obwodzie 50 wycięto kwadrat KLMN o obwodzie 20 (tak jak na rysunku). Obwód zacieniowanej figury jest równy


PIC


A) 64 B) 60 C) 75 D) 70

W kartezjańskim układzie współrzędnych (x ,y) dana jest prosta k o równaniu y = 13x − 4 . Prosta o równaniu x = ay + b jest równoległa do prostej k i przechodzi przez punkt P = (3,3) , gdy
A) a = − 1 3 i b = 4 B) a = 1 3 i b = 2 C) a = − 3 i b = − 4 D) a = 3 i b = −6

Powierzchnia boczna walca o objętości 18 π po rozwinięciu jest prostokątem, w którym przekątna tworzy z wysokością walca kąt o mierze 3 0∘ . Promień podstawy tego walca jest równy
A) 2√-3 π B) √-3 π C) √ -- 3 D) √ - --3 3

Krawędź podstawy ostrosłupa prawidłowego czworokątnego jest dwa razy dłuższa od jego wysokości. Kąt nachylenia ściany bocznej do podstawy ma miarę
A) α = 30∘ B) α = 45∘ C)  ∘ α = 6 0 D)  ∘ α = 75

Kąt środkowy i kąt wpisany są oparte na tym samym łuku. Suma ich miar jest równa 18 0∘ . Jaka jest miara kąta środkowego?
A) 60∘ B) 90∘ C) 12 0∘ D) 13 5∘

Ukryj Podobne zadania

Kąt środkowy i kąt wpisany w okrąg są oparte na tym samym łuku. Suma ich miar jest równa 9 0∘ . Miara kata środkowego jest równa
A) 30∘ B) 6 0∘ C) 45∘ D) 70∘

Kąt środkowy i kąt wpisany są oparte na tym samym łuku. Suma ich miar jest równa 15 0∘ . Jaka jest miara kąta środkowego?
A) 75∘ B) 50∘ C) 12 0∘ D) 10 0∘

W okręgu O kąt środkowy β oraz kąt wpisany α są oparte na tym samym łuku. Kąt β ma miarę o 40∘ większą od kąta α . Miara kąta β jest równa
A) 40∘ B) 80∘ C)  ∘ 10 0 D)  ∘ 12 0

Miara kąta wpisanego w okrąg jest o  ∘ 50 mniejsza od miary kąta środkowego opartego na tym samym łuku. Zatem miara kąta wpisanego jest równa
A) 40∘ B) 5 0∘ C) 60∘ D)  ∘ 70

Kąt środkowy i kąt wpisany są oparte na tym samym łuku. Suma ich miar jest równa 12 0∘ . Jaka jest miara kąta środkowego?
A) 40∘ B) 80∘ C) 18 0∘ D) 60 ∘

Miara kąta wpisanego w okrąg jest o  ∘ 30 mniejsza od miary kąta środkowego opartego na tym samym łuku. Wynika stąd, że miara kąta wpisanego jest równa
A) 30∘ B) 1 5∘ C) 10∘ D)  ∘ 45

Miara kąta wpisanego w okrąg jest o  ∘ 20 mniejsza od miary kąta środkowego opartego na tym samym łuku. Wynika stąd, że miara kąta wpisanego jest równa
A) 5∘ B) 10 ∘ C) 20∘ D)  ∘ 30

W okręgu O kąt środkowy β oraz kąt wpisany α są oparte na tym samym łuku. Kąt β ma miarę o 50∘ większą od kąta α . Miara kąta β jest równa
A) 40∘ B) 80∘ C)  ∘ 10 0 D)  ∘ 12 0

Suma kwadratów długości trzech boków trójkąta prostokątnego jest równa 162. Zatem przeciwprostokątna może mieć długość:
A) 12 B) 81 C) 54 D) 9

Ukryj Podobne zadania

Suma kwadratów długości trzech boków trójkąta prostokątnego jest równa 98. Zatem przeciwprostokątna ma długość:
A) 49 B)  √ -- 7 2 C) 7 D) 9

Dany jest prostopadłościan ABCDEF GH , w którym podstawy ABCD i EF GH są kwadratami o boku długości 6. Przekątna BH tego prostopadłościanu tworzy z przekątną AH ściany bocznej ADHE kąt o mierze 30 ∘ (zobacz rysunek).


ZINFO-FIGURE


Przekątna BH tego prostopadłościanu ma długość równą
A)  √ -- 4 3 B)  √ -- 6 3 C) 12 D) 12√ 2-

Przekrój osiowy walca jest kwadratem o boku długości 6. Objętość tego walca jest równa


PIC


A) 1 8π B) 5 4π C) 10 8π D) 216π

Ukryj Podobne zadania

Jeżeli przekrój osiowy walca jest kwadratem o boku 4, to objętość walca jest równa
A) 8π B) 16π C) 28 π D) 64π

Przekrój osiowy walca jest kwadratem o boku długości 8. Objętość tego walca jest równa


PIC


A) 3 2π B) 6 4π C) 12 8π D) 256π

Przekrój osiowy walca jest kwadratem o boku 10. Objętość tego walca jest równa


PIC


A) 5 00π B) 100π C) 250 π D) 125π

Punkt A = (− 19,27) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne
A) (76,− 57 ) B) (38,− 54) C) (57,− 81) D) (19,− 27)

Ukryj Podobne zadania

Punkt A = (13,− 21) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne
A) (− 13,21 ) B) (52,− 84) C) (− 39,63) D) (26,− 42)

Dane są punkty A = (2,2) , B = (− 1,4) ,  ( 3) C = − 1,2 i D = (2,− 1) . Pole czworokąta ABCD jest równe
A) 10,5 B) 16,5 C) 9 D) 8,25

Stosunek pól powierzchni dwóch kul jest równy 1:9. Wobec tego stosunek objętości tych kul jest równy
A) 1:3 B) 1:9 C) 1:27 D) 1:81

Ukryj Podobne zadania

Stosunek pól powierzchni dwóch kul jest równy 1:16. Wobec tego stosunek objętości tych kul jest równy
A) 1:256 B) 1:64 C) 1:16 D) 1:4

Stosunek pól powierzchni dwóch kul jest równy 1:4. Wobec tego stosunek objętości tych kul jest równy
A) 1:2 B) 1:8 C) 1:4 D) 1:16

Jeśli promień kuli zwiększymy o 30%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%

Ukryj Podobne zadania

Jeśli promień kuli zmniejszymy o 50%, to pole powierzchni kuli zmaleje o:
A) 30% B) 60% C) 75% D) ponad 90%

Jeśli promień kuli zwiększymy o 50%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%

Odległość między środkami stycznych wewnętrznie okręgów o promieniach r i R jest równa 7. Odległość między środkami stycznych zewnętrznie okręgów o promieniach r i R jest równa 23. Promienie r i R mają długości
A) 6 i 17 B) 11 i 12 C) 10 i 13 D) 8 i 15

W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta α jest równa √ -- 3 . Zatem
A) α = 60∘ B) α ∈ (40∘,6 0∘) C) α ∈ (30∘,4 0∘) D) α = 30∘

Ukryj Podobne zadania

W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta α jest równa √ -- 2 . Zatem
A) α = 45∘ B) α ∈ (40∘,6 0∘) C) α ∈ (30∘,4 0∘) D) α < 30∘

Pole rombu o kącie ostrym  ∘ 60 jest równe  √ -- 8 3 . Bok tego rombu ma długość
A) 6 B) 2 C)  √ -- 8 3 D) 4

Ukryj Podobne zadania

Pole rombu o kącie ostrym  ∘ 60 jest równe  √ -- 18 3 . Bok tego rombu ma długość
A) 9 B) 3 C) 6 D)  √ -- 12 3

Długości boków trójkąta wychodzących z wierzchołka kąta ostrego α wynoszą odpowiednio 2 dm i 40 cm. Jaką miarę ma kąt α , jeśli pole tego trójkąta jest równe 2 dm 2 ?
A) 45∘ B) 3 0∘ C) 60∘ D)  ∘ 75

Dany jest prostopadłościan ABCDEF GH , w którym prostokąty ABCD i EF GH są jego podstawami. Odcinek BH jest przekątną tego prostopadłościanu. Na którym rysunku prawidłowo oznaczono i podpisano kąt α pomiędzy przekątną BH prostopadłościanu a jego ścianą boczną ADHE ?


ZINFO-FIGURE


Strona 56 z 62
spinner