Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria

Wyszukiwanie zadań

W trójkącie prostokątnym dane są długości boków (zobacz rysunek). Wtedy


PIC


A) tg α = 1517- B) tg α = 187 C) tg α = -8 15 D) tg α = 15 8

Ukryj Podobne zadania

W trójkącie prostokątnym dane są długości boków (zobacz rysunek). Wtedy


PIC


A) tg α = 1517- B) tg α = 187 C) tg α = -8 15 D) tg α = 15 8

W trójkącie prostokątnym (patrz rysunek poniżej) tangens kąta ostrego α jest równy


PIC


A) 1157 B) √ - 6112- C) √ - 672- D)  √ - tg α = 7-2- 12

Punkt S jest środkiem okręgu wpisanego w trójkąt równoramienny ABC , w którym |AC | = |BC | = 7 i |AB | = 12 .


PIC


Wówczas miara φ kąta ASB spełnia warunek
A) 145 ∘ < φ < 1 50∘ B) 140∘ < φ < 14 5∘ C) 135∘ < φ < 1 40∘ D)  ∘ ∘ 13 0 < φ < 135

Jeśli BE ∥ CD oraz |BE | = 4 , |BC | = 8 i |CD | = 10 (patrz rysunek),


PIC


to długość odcinka AB jest równa
A) 513 B) 413 C) 4 23 D) 52 3

Obwód trójkąta ABC wynosi 24 cm. Połączono środki boków tego trójkąta i otrzymano trójkąt DEF , którego obwód jest równy
A) 6 cm B) 8 cm C) 12 cm D) 18 cm

Na rysunku przedstawiono okrąg o środku O , który jest styczny do wszystkich boków trapezu równoramiennego ABCD . Ramiona AD i BC są styczne do tego okręgu odpowiednio w punktach K i L . Kąt wypukły KOL ma miarę 1 50∘ .


PIC


Miara α kąta ostrego tego trapezu jest równa
A) 75∘ B) 8 0∘ C) 85∘ D) 65∘

Na rysunku proste BC i DE są równoległe oraz |AC | = a,|CE | = a+ 3,|BC | = 3 ,|DE | = 8 . Wobec tego


PIC


A) a = 1,8 B) a = 3,6 C) a = 2,5 D) a = 4,5

Ukryj Podobne zadania

Na rysunku proste BC i DE są równoległe oraz |AC | = 3,|CE | = 5,|BC | = a,|DE | = a+ 6 . Wobec tego


PIC


A) a = 1,8 B) a = 3,6 C) a = 2,5 D) a = 4,5

Kąty ABC i ADE są równe oraz |AB | = x − 3 , |BD | = x , |BC | = 2 , |DE | = 8 . Wobec tego x jest równe


PIC


A) 3 B) 3,5 C) 4 D) 4,5

Na rysunku proste BC i DE są równoległe oraz |AC | = a,|CE | = 12,|BC | = 3,|DE | = a+ 3 . Wobec tego


PIC


A) a = 6 B) a = 12 C) a = 2,5 D) a = 4,5

Na rysunku proste BC i DE są równoległe oraz |AB | = x − 3,|BD | = x,|BC | = 2,|DE | = 8 . Wobec tego x jest równe


PIC


A) 3 B) 3,5 C) 4 D) 4,5

Odcinek AE jest dwusieczną kąta BAD w równoległoboku ABCD . Miara kąta AED jest równa 28∘ .


PIC


Miara kąta ABC jest równa
A) 112 ∘ B) 56∘ C) 15 2∘ D) 12 4∘

Długość każdego boku kwadratu zwiększono o 20%. Wtedy pole tego kwadratu:
A) wzrośnie o 20% B) wzrośnie o 40% C) wzrośnie o 44% D) wzrośnie dwukrotnie

Ukryj Podobne zadania

Długość boku kwadratu k2 jest o 10% większa od długości boku kwadratu k1 . Wówczas pole kwadratu k 2 jest większe od pola kwadratu k1 o
A) 10% B) 110% C) 21% D) 121%

Przekątna AC prostokąta ABCD ma długość 70. Na boku AB obrano punkt E , na przekątnej AC obrano punkt F , a na boku AD obrano punkt G – tak, że czworokąt AEF G jest prostokątem (zobacz rysunek). Ponadto |EF | = 3 0 i |GF | = 40 .


PIC


Obwód prostokąta ABCD jest równy
A) 158 B) 196 C) 336 D) 490

Ukryj Podobne zadania

Przekątna AC prostokąta ABCD ma długość 104. Na boku AB obrano punkt E , na przekątnej AC obrano punkt F , a na boku AD obrano punkt G – tak, że czworokąt AEF G jest prostokątem (zobacz rysunek). Ponadto |EF | = 35 i |GF | = 84 .


PIC


Obwód prostokąta ABCD jest równy
A) 272 B) 238 C) 221 D) 136

Na bokach AB i BC trójkąta ABC wybrano odpowiednio punkty F i E w ten sposób, że |AF | : |F B| = |CE | : |EB | = 1 : 2 . Odcinki AE i CF przecinają się w punkcie S (zobacz rysunek).


ZINFO-FIGURE


Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Trójkąt ASC jest podobny do trójkąta ESF . PF
Pole trójkąta FAE jest równe polu trójkąta F CE .PF

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ABC | = 50∘ (zobacz rysunek).


ZINFO-FIGURE


Stąd wynika, że
A) β = 100∘ B) β = 120∘ C) β = 110∘ D) β = 130∘

Ukryj Podobne zadania

Dany jest trapez ABCD , w którym bok AB jest równoległy do boku DC . W tym trapezie poprowadzono odcinek EC równoległy do boku AD , podano miary dwóch kątów oraz oznaczono kąt α (zobacz rysunek).


ZINFO-FIGURE


Kąt α ma miarę
A) 55∘ B) 5 0∘ C) 45∘ D) 20∘

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ADC | = 100∘ (zobacz rysunek).


PIC


Stąd wynika, że
A) β = 40∘ B) β = 50∘ C) β = 60∘ D) β = 80∘

Kąt α jest kątem ostrym w trójkącie prostokątnym, a sin α = 0,6 . Wówczas:
A) cosα = 0,8 , tg α = 1 ,(3) B) cosα = 0,4 , tg α = 1 ,5
C) co sα = 0 ,8 , tg α = 0,75 D) co sα = 0,4 , tg α = 0 ,(6)

Na rysunku przedstawiono trzy figury. Figura F 1 powstała z koła o promieniu 4r , z którego wycięto wnętrza czterech kół o promieniu r . Figura F2 składa się z dwóch stycznych zewnętrznie kół o promieniach 3r i 2r . Figura F3 powstała z koła o promieniu 4r , z którego wycięto wnętrza dwóch kół o promieniu 2r .


PIC


Jeżeli P 1 , P2 i P3 oznaczają pola figur odpowiednio F1 , F2 i F3 , to
A) P = P 1 2 i P ⁄= P 1 3 B) P = P = P 1 2 3
C) P1 = P 3 i P1 ⁄= P2 D) P2 > P1

Liczby √ --√ --- √ --- 8, 50 , 72 są długościami trójkąta ABC . Trójkątem podobnym do trójkąta ABC jest trójkąt o bokach długości
A) √ -- √ --√ -- 2, 5, 6 B) 4, 25, 36 C) 8, 50, 72 D) 2, 5, 6

Ukryj Podobne zadania

Dany jest trójkąt o bokach długości  √ -- √ -- √ -- 2 5 ,3 5,4 5 . Trójkątem podobnym do tego trójkąta jest trójkąt, którego boki mają długości
A) 10, 15, 20 B) 20, 45, 80 C) √ -- 2 , √ -- 3 , √ -- 4 D) √ -- √ -- √ -- 5,2 5,3 5

Liczby √ ---√ --- √ ---- 27, 7 5, 108 są długościami trójkąta ABC . Trójkątem podobnym do trójkąta ABC jest trójkąt o bokach długości
A) √ -- √ --√ -- 2, 5, 6 B) 6, 10, 12 C) 8, 50, 72 D) 2, 5, 6

Do trójkąta o bokach długości 6,9,12 jest podobny trójkąt o bokach
A) 9,12 ,1 5 B) √ --√ --√ --- 6, 9, 12 C) 6,8,4 D) 1, 1, 1 6 9 12

Dany jest trójkąt o bokach długości √3-2 2√-3- 3 ,3, 3 . Trójkątem podobnym do tego trójkąta jest trójkąt, którego boki mają długości
A) √ -- √ -- 3, 3, 2 3 B)  √ -- 1, 2 3, 2 C) √-2 2 2√-2 3 , 3, 3 D) 1 -1- 2,√ 3, 1

Boki trójkąta ABC mają długości √ ---√ ---√ --- 18 , 50, 72 . Trójkątem do niego podobnym jest trójkąt o bokach
A) 3, 5, 6 B) 9, 25, 36 C) 18, 50, 72 D) √ ---√ ---√ --- 20, 52, 7 4

W romb o boku 2 i kącie  ∘ 60 wpisano okrąg. Promień tego okręgu jest równy
A) √ -- 3 B) √- 23- C) √- 43- D) √-3 6

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta k jest styczna do okręgu o promieniu 3 w punkcie A i jest styczna do okręgu o promieniu 4 w punkcie B (zobacz rysunek).


PIC


Długość odcinka AB jest równa
A)  √ -- 4 3 B) 7 C) 6 D) 3√ 4-

Punkty A ,B,C ,D ,E dzielą okrąg na 5 równych łuków. Miara zaznaczonego na rysunku kąta wpisanego AEB jest równa


PIC


A) 7 2∘ B) 48∘ C) 36 ∘ D) 38∘

Ukryj Podobne zadania

Punkty A ,B,C ,D ,E leżące na okręgu o środku S są wierzchołkami pięciokąta foremnego. Miara zaznaczonego na rysunku kąta wpisanego ADB jest równa


PIC


A) 60∘ B) 3 6∘ C) 72∘ D) 144∘

Punkty A ,B,C ,D ,E okręgu są wierzchołkami pięciokąta foremnego. Miara zaznaczonego na rysunku kąta wpisanego ACE jest równa


PIC


A) 7 2∘ B) 36∘ C) 14 4∘ D) 38 ∘

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 16 oraz |AB | = 12 . Odcinek EF jest równoległy do podstawy AB oraz |EF | = 10 . Długość odcinka AE jest równa


PIC


A) 403 B) 83 C) 172 D) 30 4

Ukryj Podobne zadania

W trójkącie równoramiennym ABC dane są |AC | = |BC | = 16 oraz |AB | = 12 . Odcinek EF jest równoległy do podstawy AB oraz |EF | = 8 . Długość odcinka AE jest równa


PIC


A) 323 B) 83 C) 163 D) 30 4

Punkty A ,B i C leżą na okręgu o środku S (zobacz rysunek).


PIC


Miary α i β zaznaczonych kątów ACB i ASB spełniają warunek β − α = 45∘ . Wynika stąd, że
A) α = 315∘ B) α = 225∘ C)  ∘ α = 1 50 D)  ∘ α = 105

Przybliżona długość przeciwprostokątnej trójkąta prostokątnego przedstawionego na rysunku jest równa


PIC


A) 5,49 B) 5,9 C) 5,85 D) 5,5

Strona 1 z 28
spinner