Wielomian jest iloczynem wielomianów oraz . Oblicz sumę współczynników wielomianu .
/Szkoła średnia
W trójkącie dane są: oraz . Oblicz długość wysokości tego trójkąta poprowadzonej z wierzchołka .
W trójkącie dane są: oraz . Oblicz długość wysokości tego trójkąta poprowadzonej z wierzchołka .
Rozwiąż równanie .
Prawdopodobieństwo wystąpienia awarii sieci ciepłowniczej na pewnym osiedlu mieszkaniowym w godzinach porannych pojedynczego dnia jest równe 0,1. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w okresie siedmiu dni wystąpią co najwyżej dwa takie dni, w których nastąpi awaria tej sieci na tym osiedlu w godzinach porannych. Wynik podaj w ułamku dziesiętnym w zaokrągleniu do części setnych.
Prawdopodobieństwo wystąpienia awarii oświetlenia ulic w pewnym mieście w godzinach wieczornych pojedynczego dnia jest równe 0,2. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w okresie sześciu dni wystąpią co najwyżej trzy takie dni, w których nastąpi awaria oświetlenia ulic w tym mieście w godzinach wieczornych. Wynik podaj w ułamku dziesiętnym w zaokrągleniu do części setnych.
Prawdopodobieństwo wystąpienia awarii sieci ciepłowniczej na pewnym osiedlu mieszkaniowym w godzinach porannych pojedynczego dnia jest równe 0,4. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w okresie dziesięciu dni wystąpi 6, 7 lub 8 awarii tej sieci na tym osiedlu w godzinach porannych. Wynik podaj w ułamku dziesiętnym w zaokrągleniu do części setnych.
Liczba jest równa:
A) B) C) D)
Obliczyć granicę .
Wyznacz liczbę rozwiązań równania w zależności od parametru .
Prosta jest styczna do okręgu w punkcie . Oblicz miarę zaznaczonego kąta jeśli .
Suma dwóch liczb jest równa , a ich różnica jest równa , gdzie i są dodatnimi liczbami całkowitymi. Wykaż, że iloczyn tych liczb jest liczbą wymierną.
Narysuj wykres funkcji , a następnie wykres funkcji .
Spodnie po obniżce ceny o 30% kosztują 126 zł. Ile kosztowały spodnie przed obniżką?
A) 163,80 zł B) 180 zł C) 294 zł D) 420 zł
Spodnie po obniżce ceny o 25% kosztują 168 zł. Ile kosztowały spodnie przed obniżką?
A) 193 zł B) 210 zł C) 224 zł D) 336 zł
Medyczna maseczka ochronna wielokrotnego użytku z wymiennymi filtrami wskutek podwyżki zdrożała o 40% i kosztuje obecnie 106,40 zł. Cena maseczki przed podwyżką była równa
A) 63,84 zł B) 65,40 zł C) 76,00 zł D) 66,40 zł
Koszt uczestnictwa w obozie sportowym w 2018 r. wynosi 1620 zł. Wzrósł on w stosunku do kosztu z 2017 r. o 35%. Koszt uczestnictwa w obozie w 2017 r. wynosił
A) 1215 zł B) 1053 zł C) 1200 zł D) 567 zł
Cena książki wzrosła o 15% i wynosi 92 zł. Ile kosztowała książka przed podwyżką?
A) 105,8 zł B) 77 zł C) 78,2 zł D) 80 zł
Cena roweru po obniżce o 15% była równa 850 zł. Przed obniżką ten rower kosztował
A) 865,00 zł B) 850,15 zł C) 1000,00 zł D) 977,50 zł
W trójkącie równoramiennym podstawa ma długość 8 cm. Promień okręgu, stycznego w punktach i do prostych zawierających ramiona i trójkąta, ma długość 5 cm. Oblicz pole trójkąta .
Ostrosłup ma 12 krawędzi. Liczba wszystkich wierzchołków tego ostrosłupa jest równa
A) 12 B) 9 C) 8 D) 7
Jeśli ostrosłup ma 50 krawędzi, to liczba jego ścian jest równa
A) 50 B) 26 C) 25 D) 22
Ostrosłup, który ma 12 krawędzi, ma
A) 6 ścian B) 7 ścian C) 8 ścian D) 9 ścian
Jeżeli ostrosłup ma 10 krawędzi, to liczba ścian bocznych jest równa
A) 5 B) 7 C) 8 D) 10
O ile procent pole koła o promieniu długości 8 jest większe od pola koła wyznaczonego przez okrąg o równaniu .
Dany jest trójkąt , w którym , a kąt zewnętrzny przy wierzchołku ma miarę .
Wykaż, że jeśli , to trójkąt jest równoramienny.
W trapezie () przekątne i przecinają się w punkcie . Wykaż, że pole trójkąta jest równe polu trójkąta .
Dane są okręgi o równaniach i . Wyznacz wszystkie wartości parametru , dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki.
Dane są okręgi o równaniach i . Wyznacz wszystkie wartości parametru , dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki.
Rozwiąż nierówność w przedziale .
Środek okręgu należy do prostej o równaniu . Punkty i należą do tego okręgu.
- Wyznacz równanie okręgu .
- Wyznacz współrzędne takiego punktu należącego do okręgu , że
- Wyznacz równania stycznych i do okręgu takich, że i oraz oblicz tangens jednego z kątów, pod jakim przecinają się te styczne.
Przekątne trapezu przecinają się w punkcie w ten sposób, że , .
Długość odcinka jest równa
A) 4 B) 6 C) 8 D) 9