Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

W stożek o promieniu r i wysokości h wpisujemy graniastosłupy sześciokątne prawidłowe tak, że jedna podstawa jest zawarta w podstawie stożka, a pozostałe wierzchołki należą do powierzchni bocznej stożka. Podaj wymiary graniastosłupa o największym polu powierzchni bocznej.

Miara kąta ostrego przecięcia prostych przedstawionych na rysunku wynosi


PIC


A) 1 5∘ B) 20∘ C) 25 ∘ D) 30∘

Ukryj Podobne zadania

Miara kąta ostrego przecięcia prostych przedstawionych na rysunku wynosi


PIC


A) 3 0∘ B) 25∘ C) 20 ∘ D) 15∘

Miara kąta ostrego przecięcia prostych przedstawionych na rysunku wynosi


PIC


A) 2 2,5∘ B) 27,5∘ C) 32,5 ∘ D) 37,5 ∘

Funkcja homograficzna f jest monotoniczna w przedziałach (− ∞ ;2 ) i (2;+ ∞ ) . Zbiór R ∖ {0} jest zbiorem wartości tej funkcji, a wartość 1 funkcja przyjmuje dla argumentu 6.

  • Znajdź wzór funkcji f .
  • Naszkicuj wykres funkcji f .
  • Uzasadnij, że funkcja f nie jest monotoniczna w zbiorze (− ∞ ;2)∪ (2;+ ∞ ) .

Liczby rzeczywiste x,y spełniają warunki: x > 1 , y > 1 oraz  3 3 x > y + 1 . Wykaż, że prawdziwa jest równość

-------1------ ⋅------1------- = -------1------ ⋅-------1------. logx (x3 + y3) logy (x3 − y3) logy (x3 + y3) logx (x3 − y3)

Wartość wyrażenia sin120∘+cos120∘- tg120∘ sin150∘+cos150∘ + tg150∘ jest równa
A) 4 B) 0 C) 1 D) 2

Podstawą ostrosłupa jest kwadrat ABCD o boku długości 40. Pola ścian bocznych ABS , BCS , CDS i ADS są odpowiednio równe: 740,  √ -- 24 0 5 , 260 i 400. Oblicz objętość tego ostrosłupa.

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 8 oraz tg α = 25 (zobacz rysunek).


ZINFO-FIGURE


Pole tego trójkąta jest równe
A) 12 B) 373- C) 625 D) 64 5

Ukryj Podobne zadania

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 14 oraz tg α = 38 (zobacz rysunek).


PIC


Pole tego trójkąta jest równe
A) 73,5 B) 36,75 C) 5,25 D) 37,3

Wyznacz odległość punktu (−2 ,3) od prostej o równaniu 3x − 4y + 2 = 0 .

Ile jest liczb naturalnych trzycyfrowych, których iloczyn cyfr jest równy 0?
A) 162 B) 90 C) 171 D) 172

Ukryj Podobne zadania

Ile jest liczb naturalnych czterocyfrowych o różnych cyfrach, których iloczyn cyfr jest równy 0?
A) 1728 B) 504 C) 720 D) 1512

W urnie znajduje się N losów, przy czym M z nich to losy wygrywające (M ≤ N ). Wybieramy losowo n losów z urny (n ≤ N ) i niech p oznacza prawdopodobieństwo, że dokładnie m spośród tych losów to losy wygrywające (m ≤ M oraz m ≤ n ). Uzasadnij, że

 (n )⋅(N −n ) p = -m---NM-−m--. (M )

Prosta o równaniu y = 5x − m + 3 przechodzi przez punkt A = (4,3) . Wtedy
A) m = 20 B) m = 1 4 C) m = 3 D) m = 0

Ukryj Podobne zadania

Prosta o równaniu y = − 3x− 2m + 6 przechodzi przez punkt A = (− 2,4) . Wtedy
A) m = 2 B) m = − 2 C) m = 4 D) m = 8

Prosta o równaniu y = 3x − (2m + 1) przecina w układzie współrzędnych oś Oy w punkcie (0,5) . Wtedy
A) m = − 6 B) m = 7 C) m = 2 D) m = − 3

Prosta o równaniu y = − 4x+ (2m − 7) przechodzi przez punkt A = (2,− 1) . Wtedy
A) m = 7 B) m = 2 12 C) m = − 1 2 D) m = − 17

Prosta o równaniu y = − 2mx + 3 przechodzi przez punkt A = (3,9) . Wtedy
A) m = 1 B) m = 2 C) m = − 1 D) m = − 2

Punkt o współrzędnych (− 2,4) należy do prostej y = x + 2a − 1 . Zatem
A) a = −3 12 B) a = 3 12 C) a = 1 2 D) a = − 4

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) , dana jest prosta k o równaniu y = 3x+ b , przechodząca przez punkt A = (−1 ,3) . Współczynnik b w równaniu tej prostej jest równy
A) 0 B) 6 C) (−1 0) D) 8

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y) , dana jest prosta k o równaniu y = − 3x + b , przechodząca przez punkt A = (− 1,− 3) . Współczynnik b w równaniu tej prostej jest równy
A) 0 B) (− 3) C) (− 6) D) (− 1)

Prosta o równaniu y = − 2x+ (3m + 3) przecina w układzie współrzędnych oś Oy w punkcie (0,2) . Wtedy
A) m = − 23 B) m = − 13 C) m = 1 3 D) m = 5 3

Prosta o równaniu y = − 2x + m − 5 przechodzi przez punkt A = (− 1,3) . Wtedy
A) m = 7 B) m = 10 C) m = 6 D) m = 0

Liczby x,y,−y ,3 są kolejnymi wyrazami pewnego ciągu arytmetycznego. Znajdź liczbę x .

Ukryj Podobne zadania

Punkty A , B , C dzielą okrąg na trzy łuki, których stosunek długości wynosi 2 : 3 : 4 . Oblicz miary kątów trójkąta ABC .

Ukryj Podobne zadania

Punkty P ,Q ,S dzielą okrąg na trzy łuki PQ ,QS i P S . Długości łuków P Q ,QS i PS pozostają w stosunku 1:2:3. Oblicz miary kątów trójkąta P QS .

Punkty A , B , C dzielą okrąg na trzy łuki, których stosunek długości wynosi 5 : 6 : 7 . Oblicz miary kątów trójkąta ABC .

Punkty A , B, C leżą na okręgu o środku O i dzielą ten okrąg na trzy łuki, których stosunek długości jest równy 3:4:5. Oblicz miary kątów trójkąta ABC .


PIC


Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | . Na ramieniu AC tego trójkąta wybrano punkt M (M ⁄= A i M ⁄= C ), a na ramieniu BC wybrano punkt N , w taki sposób, że |AM | = |CN | . Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T . Udowodnij, że  1 |ST | = 2|AB | .

Ukryj Podobne zadania

Dany jest trójkąt równoramienny ABC , w którym |AC | = |BC | . Na ramieniu AC tego trójkąta wybrano punkt M (M ⁄= A i M ⁄= C ), a na ramieniu BC wybrano punkt N . Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T . Wykaż, że jeżeli  1 |ST | = 2|AB | , to |AM | = |CN | .

Wykaż, że jeżeli kąty wewnętrzne trójkąta spełniają warunek sin α = 2 cos γsin β to trójkąt ten jest równoramienny.

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1),(x + 2),(x − 3 ) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 3 − 2x 2 − 5x+ 6 .

Ukryj Podobne zadania

Przy dzieleniu wielomianu w (x) przez dwumian (x − 1 ) otrzymujemy resztę (− 3) , przy dzieleniu przez dwumian (x − 2 ) resztę 6, a przy dzieleniu przez dwumian (x+ 3) resztę 1. Wyznacz resztę z dzielenia wielomianu w(x) przez wielomian p(x) = x 3 − 7x + 6 .

Wyznacz resztę R(x) z dzielenia wielomianu W (x) przez wielomian P (x) = x3 − 2x 2 − x + 2 wiedząc, że W (− 1) = − 1, W (2) = 2, W (1) = 5 .

Dane są funkcje  2−x- f(x) = x i  2−x- g(x ) = x−2 .

  • Naszkicuj wykresy obu funkcji w jednym układzie współrzędnych.
  • Określ przedziały monotoniczności obu funkcji.
  • Podaj zbiór rozwiązań nierówności f(x) > g(x) .

Podstawą ostrosłupa ABCDS jest kwadrat ABCD o boku długości 4. Odcinek DS jest wysokością ostrosłupa i ma długość 6. Punkt M jest środkiem odcinka DS . Oblicz pole przekroju ostrosłupa płaszczyzną BCM .

Osią symetrii paraboli będącej wykresem funkcji y = (x − 5 )(x + 15) jest prosta o równaniu
A) y = − 5 B) y = 5 C) x = − 5 D) x = 5

Ukryj Podobne zadania

Wykresem funkcji kwadratowej f(x) = − 2(x+ 5)(x − 7) jest parabola której oś symetrii ma równanie
A) x = − 2 B) x = − 1 C) x = 1 D) x = 6

Wykresem funkcji kwadratowej  √ -- f(x) = − 3(x+ 8)(x − 4) jest parabola której oś symetrii ma równanie
A) x = −2 B) x = 4 C) x = 2 D) x = − 8

Osią symetrii paraboli będącej wykresem funkcji y = (x − 7 )(x + 11) jest prosta o równaniu
A) y = − 2 B) y = 2 C) x = 2 D) x = − 2

Oś symetrii paraboli, która jest wykresem funkcji f (x) = 3(x + 2)(x − 8) ma równanie
A) y = 3 B) x = − 3 C) y = −3 D) x = 3

Osią symetrii paraboli określonej wzorem y = −(x + 4 )(6− x) jest prosta o równaniu
A) x = −4 B) y = 1 C) x = 1 D) y = 6

Średnia arytmetyczna trzech liczb: 12, 14, k , jest równa 16. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba k jest równa 22. PF
Średnia arytmetyczna liczb: 12, 14, k , 11, 17, jest większa od 16.PF
Strona 416 z 461
spinner