Określ wzajemne położenie prostej i okręgu o równaniu .
/Szkoła średnia
Dany jest trapez, w którym podstawy mają długość 4 cm i 10 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach i . Oblicz wysokość tego trapezu.
Dany jest trapez, w którym podstawy mają długość 6 cm i 20 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach i . Oblicz wysokość tego trapezu.
Dany jest prostopadłościan , w którym podstawy i są kwadratami o boku długości 6. Przekątna tego prostopadłościanu tworzy z przekątną ściany bocznej kąt o mierze (zobacz rysunek).
Przekątna tego prostopadłościanu ma długość równą
A) B) C) 12 D)
Pierwszy wyraz ciągu arytmetycznego jest równy 5, a suma jego pięciu początkowych wyrazów wynosi 55. Czwarty wyraz tego ciągu jest równy
A) 12 B) 13 C) 14 D) 15
Pierwszy wyraz ciągu arytmetycznego wynosi 7, suma siedmiu początkowych wyrazów ciągu jest równa . Czwarty wyraz ciągu jest równy
A) B) C) D) 16
Przekrój osiowy walca jest kwadratem o boku długości 6. Objętość tego walca jest równa
A) B) C) D)
Przekrój osiowy walca jest kwadratem o boku 10. Objętość tego walca jest równa
A) B) C) D)
Przekrój osiowy walca jest kwadratem o boku długości 6. Objętość tego walca jest równa
A) B) C) D)
Przekrój osiowy walca jest kwadratem o boku długości 8. Objętość tego walca jest równa
A) B) C) D)
Jeżeli przekrój osiowy walca jest kwadratem o boku 4, to objętość walca jest równa
A) B) C) D)
Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 15, jeśli wiadomo, że jest ona podzielna przez 18.
Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 18, jeśli wiadomo, że jest ona podzielna przez 24.
Punkt i środek odcinka są położone symetrycznie względem początku układu współrzędnych. Zatem punkt ma współrzędne
A) B) C) D)
Punkt i środek odcinka są położone symetrycznie względem początku układu współrzędnych. Zatem punkt ma współrzędne
A) B) C) D)
Długości boków trójkąta tworzą ciąg geometryczny, przy czym kąt trójkąta leżący naprzeciwko boku długości ma miarę . Oblicz miary pozostałych kątów tego trójkąta.
Dane są punkty , , i . Pole czworokąta jest równe
A) 10,5 B) 16,5 C) 9 D) 8,25
Trzy wychodzące z jednego wierzchołka krawędzie równoległościanu są równe i . Krawędzie i są prostopadłe, a krawędź tworzy z każdą z nich kąt ostry . Oblicz objętość równoległościanu.
Stosunek pól powierzchni dwóch kul jest równy 1:9. Wobec tego stosunek objętości tych kul jest równy
A) 1:3 B) 1:9 C) 1:27 D) 1:81
Stosunek pól powierzchni dwóch kul jest równy 1:16. Wobec tego stosunek objętości tych kul jest równy
A) 1:256 B) 1:64 C) 1:16 D) 1:4
Stosunek pól powierzchni dwóch kul jest równy 1:4. Wobec tego stosunek objętości tych kul jest równy
A) 1:2 B) 1:8 C) 1:4 D) 1:16
Podstawą ostrosłupa jest trapez prostokątny, w którym jedna z podstaw ma długość 7, a jedna z przekątnych ma długość . Krawędź jest wysokością ostrosłupa oraz . Oblicz objętość tego ostrosłupa.
Jeśli promień kuli zwiększymy o 30%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%
Jeśli promień kuli zmniejszymy o 50%, to pole powierzchni kuli zmaleje o:
A) 30% B) 60% C) 75% D) ponad 90%
Jeśli promień kuli zwiększymy o 50%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%
Automat biletowy drukuje 30 biletów w ciągu 2 minut i 6 sekund. Który wzór opisuje zależność między liczbą wydrukowanych biletów (), a czasem ich druku w sekundach (), jeżeli tempo drukowania biletów nie ulega zmianie?
A) B) C) D)
Jeżeli odcinek podzielimy na 80 równych części, to każda część ma długość 0,15 cm. Który wzór opisuje zależność między liczbą równych części (), na którą dzielimy odcinek , a długością () jednej takiej części w milimetrach?
A) B) C) D)
Ciąg jest ciągiem geometrycznym o ilorazie , w którym . Suma jest równa
A) 136 B) 68 C) 34 D) 289
Ciąg jest ciągiem geometrycznym o ilorazie , w którym . Suma jest równa
A) 39 B) 351 C) 117 D) 507
Dany jest stożek o polu powierzchni bocznej równym , w którym tangens kąta nachylenia tworzącej do podstawy jest równy . Oblicz objętość tego stożka.
Odległość między środkami stycznych wewnętrznie okręgów o promieniach i jest równa 7. Odległość między środkami stycznych zewnętrznie okręgów o promieniach i jest równa 23. Promienie i mają długości
A) 6 i 17 B) 11 i 12 C) 10 i 13 D) 8 i 15
Wyrażenie , gdzie jest kątem ostrym, jest równe
A) B) C) D)
Wykaż, że dla dowolnych punktów płaszczyzny spełniona jest równość.
W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta jest równa . Zatem
A) B) C) D)
W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta jest równa . Zatem
A) B) C) D)