Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

Określ wzajemne położenie prostej k : x − y − 1 = 0 i okręgu o równaniu (x + 1)2 + y2 = 2 .

Dany jest trapez, w którym podstawy mają długość 4 cm i 10 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach 30∘ i 45 ∘ . Oblicz wysokość tego trapezu.

Ukryj Podobne zadania

Dany jest trapez, w którym podstawy mają długość 6 cm i 20 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach 30∘ i 45 ∘ . Oblicz wysokość tego trapezu.

Dany jest prostopadłościan ABCDEF GH , w którym podstawy ABCD i EF GH są kwadratami o boku długości 6. Przekątna BH tego prostopadłościanu tworzy z przekątną AH ściany bocznej ADHE kąt o mierze 30 ∘ (zobacz rysunek).


ZINFO-FIGURE


Przekątna BH tego prostopadłościanu ma długość równą
A)  √ -- 4 3 B)  √ -- 6 3 C) 12 D) 12√ 2-

Pierwszy wyraz ciągu arytmetycznego jest równy 5, a suma jego pięciu początkowych wyrazów wynosi 55. Czwarty wyraz tego ciągu jest równy
A) 12 B) 13 C) 14 D) 15

Ukryj Podobne zadania

Pierwszy wyraz ciągu arytmetycznego wynosi 7, suma siedmiu początkowych wyrazów ciągu jest równa (− 1 4) . Czwarty wyraz ciągu jest równy
A) − 11 B) − 3 C) − 2 D) 16

Przekrój osiowy walca jest kwadratem o boku długości 6. Objętość tego walca jest równa


PIC


A) 1 8π B) 5 4π C) 10 8π D) 216π

Ukryj Podobne zadania

Przekrój osiowy walca jest kwadratem o boku 10. Objętość tego walca jest równa


PIC


A) 5 00π B) 100π C) 250 π D) 125π

Przekrój osiowy walca jest kwadratem o boku długości 8. Objętość tego walca jest równa


PIC


A) 3 2π B) 6 4π C) 12 8π D) 256π

Jeżeli przekrój osiowy walca jest kwadratem o boku 4, to objętość walca jest równa
A) 8π B) 16π C) 28 π D) 64π

Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 15, jeśli wiadomo, że jest ona podzielna przez 18.

Ukryj Podobne zadania

Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 18, jeśli wiadomo, że jest ona podzielna przez 24.

Punkt A = (− 19,27) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne
A) (76,− 57 ) B) (38,− 54) C) (57,− 81) D) (19,− 27)

Ukryj Podobne zadania

Punkt A = (13,− 21) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne
A) (− 13,21 ) B) (52,− 84) C) (− 39,63) D) (26,− 42)

Długości boków (a ,b ,c) trójkąta tworzą ciąg geometryczny, przy czym kąt trójkąta leżący naprzeciwko boku długości b ma miarę 60∘ . Oblicz miary pozostałych kątów tego trójkąta.

Dane są punkty A = (2,2) , B = (− 1,4) ,  ( 3) C = − 1,2 i D = (2,− 1) . Pole czworokąta ABCD jest równe
A) 10,5 B) 16,5 C) 9 D) 8,25

Trzy wychodzące z jednego wierzchołka krawędzie równoległościanu są równe a,b i c . Krawędzie a i b są prostopadłe, a krawędź c tworzy z każdą z nich kąt ostry α . Oblicz objętość równoległościanu.

Stosunek pól powierzchni dwóch kul jest równy 1:9. Wobec tego stosunek objętości tych kul jest równy
A) 1:3 B) 1:9 C) 1:27 D) 1:81

Ukryj Podobne zadania

Stosunek pól powierzchni dwóch kul jest równy 1:16. Wobec tego stosunek objętości tych kul jest równy
A) 1:256 B) 1:64 C) 1:16 D) 1:4

Stosunek pól powierzchni dwóch kul jest równy 1:4. Wobec tego stosunek objętości tych kul jest równy
A) 1:2 B) 1:8 C) 1:4 D) 1:16

Podstawą ostrosłupa ABCDS jest trapez prostokątny, w którym jedna z podstaw ma długość 7, a jedna z przekątnych ma długość √ --- 34 . Krawędź AS jest wysokością ostrosłupa oraz  √ ---- |AS | = 7, |CS | = 107 . Oblicz objętość tego ostrosłupa.

Jeśli promień kuli zwiększymy o 30%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%

Ukryj Podobne zadania

Jeśli promień kuli zmniejszymy o 50%, to pole powierzchni kuli zmaleje o:
A) 30% B) 60% C) 75% D) ponad 90%

Jeśli promień kuli zwiększymy o 50%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%

Automat biletowy drukuje 30 biletów w ciągu 2 minut i 6 sekund. Który wzór opisuje zależność między liczbą wydrukowanych biletów (x ), a czasem ich druku w sekundach (y ), jeżeli tempo drukowania biletów nie ulega zmianie?
A) y = 126x B)  4,2- y = x C) y = 4 ,2x D)  -x- y = 4,2

Ukryj Podobne zadania

Jeżeli odcinek AB podzielimy na 80 równych części, to każda część ma długość 0,15 cm. Który wzór opisuje zależność między liczbą równych części (x ), na którą dzielimy odcinek AB , a długością (y ) jednej takiej części w milimetrach?
A)  1,2- y = x B)  120- y = x C) y = 120x D)  -x- y = 1,2

Ciąg (an) jest ciągiem geometrycznym o ilorazie q = 2 , w którym a1 + a2 + a3 = 17 . Suma a4 + a5 + a6 jest równa
A) 136 B) 68 C) 34 D) 289

Ukryj Podobne zadania

Ciąg (an) jest ciągiem geometrycznym o ilorazie q = 3 , w którym a1 + a2 + a3 = 13 . Suma a4 + a5 + a6 jest równa
A) 39 B) 351 C) 117 D) 507

Dany jest stożek o polu powierzchni bocznej równym 3√-61 2 π , w którym tangens kąta nachylenia tworzącej do podstawy jest równy 56 . Oblicz objętość tego stożka.

Odległość między środkami stycznych wewnętrznie okręgów o promieniach r i R jest równa 7. Odległość między środkami stycznych zewnętrznie okręgów o promieniach r i R jest równa 23. Promienie r i R mają długości
A) 6 i 17 B) 11 i 12 C) 10 i 13 D) 8 i 15

Wyrażenie cos2α−-sin2α- sin2α+cos2α 1−sin 2α ⋅ sin 2α+ 1 , gdzie α jest kątem ostrym, jest równe
A) sin 22α B) 1− tg 22α C) --1--- cos22α D) cos22α − sin2 2α

Wykaż, że dla dowolnych punktów płaszczyzny A ,B ,C ,D ,E ,F spełniona jest równość.

−→ −→ −→ −→ −→ −→ AB + CD + EF = AD + CF + EB .

W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta α jest równa √ -- 3 . Zatem
A) α = 60∘ B) α ∈ (40∘,6 0∘) C) α ∈ (30∘,4 0∘) D) α = 30∘

Ukryj Podobne zadania

W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta α jest równa √ -- 2 . Zatem
A) α = 45∘ B) α ∈ (40∘,6 0∘) C) α ∈ (30∘,4 0∘) D) α < 30∘

Strona 421 z 461
spinner