Wyznacz wartości funkcji trygonometrycznych kątów ostrych trójkąta powstałego wskutek połączenia odcinkiem wierzchołka kwadratu ze środkiem przeciwległego boku.
/Szkoła średnia/Geometria/Planimetria/Trójkąt
W trójkącie prostokątnym przyprostokątne mają długości: , . Na boku wybrano punkt tak, że odcinki i mają równe długości. Oblicz długość odcinka .
Trójkąt o bokach 6, 8 i 10 jest podobny do trójkąta o obwodzie 216. Oblicz długości boków drugiego trójkąta.
Trójkąt o bokach 12, 9 i 15 jest podobny do trójkąta o obwodzie 108. Oblicz długości boków drugiego trójkąta.
Wykaż, że w trójkącie prostokątnym suma długości obu przyprostokątnych jest równa sumie długości średnic okręgów wpisanego i opisanego na tym trójkącie.
Przyprostokątne trójkąta prostokątnego mają długości i , a jego przeciwprostokątna ma długość . Wykaż, że promień okręgu wpisanego w ten trójkąt ma długość .
Trójkąt jest wpisany w okrąg o środku . Kąty wewnętrzne i tego trójkąta są równe, odpowiednio, i . Wykaż, że trójkąt jest rozwartokątny, i udowodnij, że miary wypukłych kątów środkowych i tworzą w podanej kolejności ciąg arytmetyczny.
Dany jest trójkąt równoboczny o boku długości 16. Na boku obrano punkt dzielący ten bok w stosunku 3:5, licząc od punktu . Oblicz sinus kąta .
W trójkącie przedłużono bok poza wierzchołek i odłożono odcinek taki, że . Następnie połączono punkty i (rysunek). Wykaż, że .
W trójkącie przedłużono bok poza wierzchołek i odłożono odcinek taki, że . Następnie połączono punkty i (rysunek). Wykaż, że .
Uzasadnij wzór na pole trójkąta , gdzie i są miarami kątów trójkąta przyległych do boku, na który opuszczono wysokość .
Trójkąt podzielony jest przez dwie proste równoległe do boku , na trzy figury o równych polach. Oblicz na jakie części proste te podzieliły bok .
Na trójkącie o bokach długości opisano okrąg. Oblicz promień tego okręgu.
W trójkącie dane są kąty , oraz długość boku leżącego naprzeciw kąta . Oblicz długości pozostałych boków.
W okrąg o średnicy 16,25 wpisano trójkąt ostrokątny , w którym . Miary kątów i tego trójkąta spełniają warunek
Oblicz promień okręgu wpisanego w trójkąt .
Na dwusiecznej trójkąta , w którym wybrano punkt . Wykaż, że pole trójkąta jest większe od pola trójkąta .
Dany jest trójkąt o bokach długości 1, , 2. Oblicz cosinus i sinus kąta leżącego naprzeciw najkrótszego boku tego trójkąta.
W trójkącie prostokątnym jedna przyprostokątna jest 4 razy dłuższa od drugiej. Wykaż, że wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki, z których jeden jest 16 razy dłuższy od drugiego.
W trójkącie prostokątnym jedna przyprostokątna jest 3 razy dłuższa od drugiej. Wykaż, że wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki, z których jeden jest 9 razy dłuższy od drugiego.
Dwusieczna kąta prostego w trójkącie prostokątnym dzieli przeciwprostokątna w stosunku 3:4. Oblicz stosunek pola koła opisanego na tym trójkącie do pola koła wpisanego w ten trójkąt.
Kąty trójkąta spełniają zależność
Oblicz wartość wyrażenia .
W trójkącie ostrokątnym dane są długości boków: , . Pole trójkąta jest równe . Oblicz
- długość boku ;
- sinus kąta ;
- pole koła opisanego na trójkącie ;
- długość promienia okręgu wpisanego w trójkąt.
Dany jest trójkąt prostokątny równoramienny . Punkty i dzielą przeciwprostokątną na trzy odcinki równej długości. Oblicz cosinus kąta .
Dany jest trójkąt , w którym i . Na boku leży punkt taki, że oraz . Oblicz pole trójkąta .