Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Funkcje

Wyszukiwanie zadań

Dla jakiej wartości parametru m wielomian  2015 3 m 2016 W (x) = 2 x + 32 x+ 2 jest podzielny przez dwumian x+ 1 .

Wykaż, że dla dowolnego kąta α takiego, że sin α cos3 α ⁄= 0 zachodzi tożsamość

 2 tg3α-= 3-−-4-sin--α-. tg α 4 cos2α − 3

Wielomian  5 3 2 W (x) = x − x + px + qx + r jest podzielny przez wielomian R (x) = x 3 + x + 12 . Wyznacz liczby p ,q i r .

Wielomian  3 2 W (x) = x − x + px + q można dwukrotnie podzielić bez reszty przez dwumian (x + 2) . Oblicz p i q .

Reszta z dzielenia wielomianu  3 2 W (x) = 4x − 6x − (5m + 1)x − 2m przez dwumian x+ 2 jest równa (− 30 ) . Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność W (x) ≥ 0 .

Wyznacz najmniejszą m i największą M wartość funkcji  3 f (x) = x − 3x + 20 w przedziale ⟨− 3;3⟩ .

Zbiorem wartości funkcji kwadratowej g jest przedział (− ∞ ,5⟩ , a zbiorem rozwiązań nierówności g (x) > 0 jest przedział (2,8) . Wyznacz wzór funkcji g .

Dane są wielomiany  2 W (x) = x + 3x+ 2 , F (x) = ax + b , H (x) = − 2x3 − 3x2 + 5x + 6 . Wyznacz współczynniki a,b, dla których wielomiany W (x) ⋅F(x ) oraz H (x ) są równe.

  • Narysuj wykresy funkcji y = ||x+ 3|− 2 | oraz y = − |x + 1| , gdzie x ∈ R .
  • Wyznacz te wartości parametru m , dla których równanie ||x + 3| − 2|+ |x + 1 | = m ma dokładnie dwa rozwiązania.

Funkcja f określona jest wzorem  x2−1 f(x ) = x .

  • Wykaż ze zbiorem wartości funkcji f jest zbiór liczb rzeczywistych.
  • Uzasadnij, że funkcja f nie jest rożnowartościowa.

Dane są wielomiany  3 2 W (x) = 2x − 3x − 8x − 3 i  2 P(x) = (x + 1 )(ax + bx + c) .

  • Wyznacz współczynniki a,b,c tak, aby W (x) = P (x) .
  • Przedstaw wielomian W (x) jako iloczyn wielomianów liniowych.

Dana jest funkcja  1+tgx- f(x ) = ctgx dla  π- π- x ∈ ⟨6 ,3⟩ .

  • Rozwiąż równanie f (x) = 2 .
  • Wyznacz najmniejszą wartość funkcji f(x) .

Wyznacz wszystkie wartości parametru m , dla których dziedziną funkcji

 2 2 f(x ) = log[(m + m − 6)x + (m − 2)x + 1]

jest zbiór wszystkich liczb rzeczywistych.

Wykaż, że wyrażenie −-cos2x- -1- sinxcosx = tg x + tgx nie jest tożsamością.

Dany jest wielomian  3 2 W (x) = − 2x + kx + 4x − 8 .

  • Wyznacz wartość k tak, aby reszta z dzielenia wielomianu W przez dwumian x + 1 była równa -6.
  • Dla znalezionej wartości k rozłóż wielomian na czynniki liniowe.
  • Dla znalezionej wartości k rozwiąż nierówność W (x + 1) ≤ − 3x 3 + 5x − 2 .

Reszta z dzielenia wielomianu W (x) przez wielomian  2 3 (x − 2x ) jest równa 2x 5 − 3x 2 + 7 . Oblicz resztę z dzielenia wielomianu W ′(x) przez dwumian (x − 2) .

Reszta z dzielenia wielomianu W (x) przez x − 5 jest równa 4. Oblicz resztę z dzielenia wielomianu W (x + 3) przez wielomian x − 2 .

Ukryj Podobne zadania

Reszta z dzielenia wielomianu W (x) przez x − 2 jest równa 7. Oblicz resztę z dzielenia wielomianu W (x + 1) przez wielomian x − 1 .

Wyznacz współczynniki a,b wielomianu  3 2 W (x) = x + ax + bx+ 1 wiedząc, że dla każdego x ∈ R prawdziwa jest równość: W (x − 1) − W (x ) = − 3x2 + 3x − 6 .

Strona 4 z 20
spinner