Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

Dany jest okrąg o środku w punkcie S i promieniu r . Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC . Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ASD jest trzy razy większa od miary kąta ACS , to |BC | = r .


PIC


Punkty P 1,P 2,P3,...,P23,P24 dzielą okrąg na 24 równe łuki (zobacz rysunek). Punkt A jest punktem przecięcia cięciw P 11P 22 i P1P16 .


PIC


Udowodnij, że |∡P 16AP 11| = 60∘ .

*Ukryj

Punkty P1,P 2,P3,...,P23,P24 dzielą okrąg na 24 równe łuki (zobacz rysunek). Punkt A jest punktem przecięcia cięciw P9P20 i P6P 13 .


PIC


Udowodnij, że trójkąt AP 20P13 jest równoramienny.

Punkty P1,P 2,P3,...,P23,P24 dzielą okrąg na 24 równe łuki (zobacz rysunek). Punkt A jest punktem przecięcia cięciw P5P21 i P1P 15 .


PIC


Udowodnij, że |∡P 15AP 21| = 75∘ .

Dwa okręgi przecinają się w punktach M i N . Przez punkt A pierwszego okręgu prowadzimy proste AM i AN , przecinające drugi okrąg w punktach B i C . Udowodnij, że styczna w punkcie A do pierwszego okręgu jest równoległa do prostej BC .

*Ukryj

Dwa okręgi przecinają się w punktach M i N . Przez punkt A pierwszego okręgu prowadzimy proste AM i AN , przecinające drugi okrąg w punktach B i C . Udowodnij, że styczna w punkcie A do pierwszego okręgu jest równoległa do prostej BC .


PIC


Środek S okręgu opisanego na trójkącie równoramiennym ABC , o ramionach AC i BC , leży wewnątrz tego trójkąta (zobacz rysunek).


PIC


Wykaż, że miara kąta wypukłego ASB jest cztery razy większa od miary kąta wypukłego SBC .

Dwa okręgi przecinają się w punktach K i L . Przez punkty K i L poprowadzono proste, które przecinają dane okręgi w punktach A,B ,C,D tak, jak pokazano to na poniższym rysunku. Wykaż, że AC ∥ BD .


PIC


Na okręgu o środku S wybrano punkty A ,B,C ,D,E w ten sposób, że odcinek AB jest średnicą okręgu oraz |∡BCD | = |∡BEC | (zobacz rysunek).


PIC


Wykaż, że proste AB i CD są prostopadłe.

Wierzchołki A i C trójkąta ABC leżą na okręgu o promieniu r , a środek S tego okręgu leży na boku AB trójkąta (zobacz rysunek). Prosta BC jest styczna do tego okręgu w punkcie C , a ponadto  √ -- |AC | = r 3 . Wykaż, że kąt ACB ma miarę 120∘ .


PIC


*Ukryj

Wierzchołki A i C trójkąta ABC leżą na okręgu o promieniu r , a środek S tego okręgu leży na boku AB trójkąta (zobacz rysunek). Prosta BC jest styczna do tego okręgu w punkcie C , a ponadto |∡ACB | = 12 0∘ . Wykaż, że |AC | = r√ 3- .


PIC


Wierzchołki A i C trójkąta ABC leżą na okręgu o promieniu r , a środek S tego okręgu leży na boku AB trójkąta (zobacz rysunek). Prosta BC jest styczna do tego okręgu w punkcie C , a ponadto |AC | = 2rco s20∘ . Wykaż, że kąt ABC ma miarę 50∘ .


PIC


Dane są dwa półokręgi o wspólnym środku O i średnicach odpowiednio AB i CD (punkty A ,B ,C,D i O są współliniowe).


PIC


Punkt P leży na wewnętrznym półokręgu, punkt R leży na zewnętrznym półokręgu, punkty O ,P i R są współliniowe. Udowodnij, że |∡AP B |+ |∡CRD | = 1 80∘ .

Udowodnij, że jeżeli O jest środkiem okręgu, na którym leżą punkty A ,B,C , to β = 90 ∘ + α .


PIC


Dany jest okrąg o środku w punkcie O . Prosta KL jest styczna do tego okręgu w punkcie L , a środek O tego okręgu leży na odcinku KM (zob. rysunek). Udowodnij, że kąt KML ma miarę 31∘ .


PIC


Na okręgu o środku S wybrano punkty A ,B,C i D w ten sposób, że prosta AB zawiera punkt S , a proste AD i BC przecinają się w punkcie E . Punkt M jest punktem wspólnym prostych AC i BD . Wykaż, że proste EM i AB są prostopadłe.


PIC


Przez punkt styczności dwóch okręgów poprowadzono sieczną. Udowodnij, że wypukłe kąty środkowe oparte na łukach wyznaczonych przez tę sieczną na okręgach mają równe miary.

Dwa okręgi są styczne zewnętrznie w punkcie P . Poprowadzono prostą, styczną do obu okręgów odpowiednio w punktach A i B (A ⁄= B ). Wykaż, że kąt ∡AP B jest prosty.

*Ukryj

Dwa okręgi są zewnętrznie styczne w punkcie C oraz są styczne do prostej k w punktach A i B odpowiednio (zobacz rysunek).


PIC


Uzasadnij, że trójkąt ABC jest prostokątny.

Średnica AB i cięciwa CD okręgu o środku O i promieniu r przecinają się w punkcie E takim, że |DE | = r . Wykaż, że |∡AOC | = 3|∡AEC | .


PIC


*Ukryj

Dany jest okrąg o środku w punkcie S i promieniu r . Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC równy promieniowi danego okręgu. Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ACS jest równa α , to miara kąta ASD jest równa 3α .


PIC