Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt/Trapez

Wyszukiwanie zadań

Dany jest trapez prostokątny ABCD o kątach prostych przy wierzchołkach A i D . Ramię BC trapezu ma długość 5. W ten trapez wpisano okrąg o środku w punkcie S i promieniu 2. Punkt P jest punktem styczności tego okręgu i dłuższej podstawy AB tego trapezu (zobacz rysunek).


ZINFO-FIGURE


Wykaż, że trójkąty BP S i BSC są trójkątami podobnymi, oraz oblicz skalę tego podobieństwa.

Suma miar dwóch sąsiednich kątów trapezu jest równa  ∘ 6 8 , a różnica miar dwóch pozostałych kątów jest równa 1 4∘ . Oblicz miary kątów tego trapezu.

Podstawy trapezu prostokątnego mają długości 70 i 30, kąt ostry trapezu ma miarę 22∘ . Oblicz pole trapezu, przyjmując, że tg22 ∘ = 0,404 .

Ukryj Podobne zadania

Podstawy trapezu prostokątnego mają długości 6 i 10 oraz tangens kąta ostrego jest równy 3. Oblicz pole tego trapezu.

Trapez ABCD (AB ∥ CD , |AB | > |CD | ) jest wpisany w okrąg o promieniu długości R . Wiadomo że kąt ostry trapezu ma miarę α zaś |∡ACB | = β , gdzie AC jest przekątną trapezu. Oblicz długość a dłuższej podstawy tego trapezu oraz długość h jego wysokości.

Oblicz promień okręgu opisanego na trapezie równoramiennym, w którym sinus kąta ostrego jest równy 34 , a przekątna ma długość 12.

Trapez równoramienny o przekątnej długości d i ramieniu długości c jest opisany na okręgu. Wykaż, że odległość środka okręgu wpisanego w ten trapez od końca krótszej podstawy jest równa  ∘ ------------------- 1 2c2 − 2c √ 2c2 − d 2 2 .

Podstawy trapezu równoramiennego mają długości 3 i 5, a jego ramię ma długość 2. Oblicz promień okręgu opisanego na tym trapezie.

Trapez równoramienny jest opisany na okręgu. Suma długości krótszej podstawy i ramienia trapezu jest równa 30. Wyraź pole tego trapezu jako funkcję długości jego ramienia. Wyznacz dziedzinę tej funkcji.

W trapezie ABCD boki nierównoległe AD i BC zawierają się w prostych prostopadłych. Oblicz pole trapezu, mając dane |AD | = a oraz |∡ABC | = |∡DAC | = α < 90∘ .

Udowodnij, że średnica okręgu wpisanego w trapez równoramienny, ma długość równą średniej geometrycznej długości podstaw trapezu.

Ukryj Podobne zadania

Trapez równoramienny ABCD o podstawach AB i CD jest opisany na okręgu o promieniu r . Wykaż, że 4r2 = |AB |⋅|CD | .

Połączono ramiona trapezu odcinkiem równoległym do podstaw i dzielącym te ramiona w stosunku 2:3 licząc od krótszej podstawy. Oblicz długość tego odcinka, jeśli wiesz, że podstawy trapezu mają długości a i b , gdzie a > b .

Na okręgu o promieniu r opisano trapez równoramienny, którego długość jednej z podstaw wynosi 4r . Oblicz odległość środka okręgu od wierzchołków trapezu.

W trapez równoramienny, który nie jest równoległobokiem, wpisano okrąg promieniu 4 cm. Ramię trapezu ma długość 10 cm. Punkty styczności okręgu z ramionami trapezu dzielą obwód trapezu na dwie częsci. Oblicz stosunek długości tych części.

W trapezie równoramiennym przekątna ma długość d i tworzy z dłuższą podstawą kąt o mierze α . Oblicz pole tego trapezu.

Pole trapezu równoramiennego opisanego na okręgu jest równe 80, a cosinus kąta rozwartego tego trapezu jest równy − 35 . Oblicz długość ramienia tego trapezu.

W okrąg wpisano trapez równoramienny ABCD w ten sposób, że podstawa AB jest średnicą tego okręgu. Ramię trapezu ma długość 10, a jego przekątna jest o 11 dłuższa od promienia okręgu. Oblicz wysokość tego trapezu.


PIC


W trapezie ABCD o podstawach AB i CD przekątne AC oraz BD przecinają się w punkcie S . Wykaż, że jeżeli |AS | = 56|AC | , to pole trójkąta ABS jest 25 razy większe od pola trójkąta DCS .

Ukryj Podobne zadania

W trapezie ABCD o podstawach AB i CD przekątne AC oraz BD przecinają się w punkcie S . Wykaż, że jeżeli |AS | = 45|AC | , to pole trójkąta ABS jest 16 razy większe od pola trójkąta DCS .

Wyprowadź wzór na pole trapezu ze wzorów na pole równoległoboku i trójkąta.

W trapezie kąty przy dłuższej podstawie to  ∘ 60 i  ∘ 30 , a długość wysokości trapezu wynosi 6. Oblicz pole trapezu oraz długości jego podstaw wiedząc, że suma długości ramion jest równa sumie długości podstaw.

Odcinek AB jest dłuższą podstawą trapezu równoramiennego ABCD opisanego na okręgu o środku O . Oblicz pole tego trapezu jeżeli |AO | = 6 i sin ∡ABC = 45 .

Strona 8 z 10
spinner