Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła podstawowa

Wyszukiwanie zadań

Przekątna AC prostokąta ABCD ma długość 70. Na boku AB obrano punkt E , na przekątnej AC obrano punkt F , a na boku AD obrano punkt G – tak, że czworokąt AEF G jest prostokątem (zobacz rysunek). Ponadto |EF | = 3 0 i |GF | = 40 .


PIC


Obwód prostokąta ABCD jest równy
A) 158 B) 196 C) 336 D) 490

Ukryj Podobne zadania

Przekątna AC prostokąta ABCD ma długość 104. Na boku AB obrano punkt E , na przekątnej AC obrano punkt F , a na boku AD obrano punkt G – tak, że czworokąt AEF G jest prostokątem (zobacz rysunek). Ponadto |EF | = 35 i |GF | = 84 .


PIC


Obwód prostokąta ABCD jest równy
A) 272 B) 238 C) 221 D) 136

Oblicz objętość i pole powierzchni graniastosłupa prostego, którego podstawą jest romb o przekątnych długości 6 cm i 8 cm, którego przekątna ściany bocznej tworzy z krawędzią podstawy kąt o mierze 45∘ .

Uczeń przeczytał w ciągu tygodnia książkę liczącą 420 stron.

Dzień Liczba przeczytanych stron Czas czytania
1. 50 1 h 40 min
2. 70 2 h
3. 90 2 h 20 min
4. 30 30 min
5. 70 2 h 10 min
6. 80 2 h 30 min
7. 30 30 min

Na podstawie informacji zawartych w powyższej tabeli wybierz zdanie prawdziwe.
A) Pierwszego dnia uczeń przeczytał ponad 20% całej książki.
B) Uczeń czytał średnio 50 stron dziennie.
C) Piątego dnia uczeń przeczytał 1 6 całej książki.
D) Przeczytanie pierwszej połowy książki zajęło uczniowi mniej czasu niż przeczytanie drugiej połowy.

Świeżo skoszona trawa zawiera 60% wody, a wysuszone siano tylko 15% wody. Oblicz, ile kilogramów wysuszonego siana można otrzymać z 1 tony skoszonej trawy? Wynik podaj w zaokrągleniu do pełnych kilogramów.

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ABC | = 50∘ (zobacz rysunek).


ZINFO-FIGURE


Stąd wynika, że
A) β = 100∘ B) β = 120∘ C) β = 110∘ D) β = 130∘

Ukryj Podobne zadania

Dany jest trapez ABCD , w którym bok AB jest równoległy do boku DC . W tym trapezie poprowadzono odcinek EC równoległy do boku AD , podano miary dwóch kątów oraz oznaczono kąt α (zobacz rysunek).


ZINFO-FIGURE


Kąt α ma miarę
A) 55∘ B) 5 0∘ C) 45∘ D) 20∘

Dany jest trapez ABCD , w którym przekątna AC jest prostopadła do ramienia BC , |AD | = |DC | oraz |∡ADC | = 100∘ (zobacz rysunek).


PIC


Stąd wynika, że
A) β = 40∘ B) β = 50∘ C) β = 60∘ D) β = 80∘

Na rysunku przedstawiono bryłę zbudowaną z sześciu jednakowych sześcianów. Objętość tej bryły jest równa 38 4 cm 3 .


PIC


Pole powierzchni całkowitej tej bryły jest równe
A) 320 cm 2 B) 5 76 cm 2 C) 336 cm 2 D) 3 84 cm 2

Ukryj Podobne zadania

Na rysunku przedstawiono bryłę zbudowaną z sześciu jednakowych sześcianów. Objętość tej bryły jest równa 38 4 cm 3 .


PIC


Pole powierzchni całkowitej tej bryły jest równe
A) 320 cm 2 B) 5 76 cm 2 C) 336 cm 2 D) 3 84 cm 2

Stężenie pewnego roztworu wodnego soli wynosi 5%. Ile kilogramów czystej wody należy dodać do 90 kg tego roztworu, aby otrzymać roztwór o stężeniu 2%?

Ukryj Podobne zadania

Stężenie pewnego roztworu wodnego soli wynosi 10%. Ile kilogramów czystej wody należy dodać do 12 kg tego roztworu, aby otrzymać roztwór o stężeniu 6%?

Stężenie roztworu kwasu solnego wynosi 5%. Ile kilogramów wody należy dodać do 44 kg tego roztworu, aby stężenie roztworu zmniejszyło się do 2%?

Ula w trakcie loterii charytatywnej sprzedawała dwa rodzaje losów: losy za 5 złotych i losy za 7 złotych. W sumie sprzedała 92 losy, przy czym sprzedała 3 razy więcej losów za 5 zł, niż losów za 7 złotych. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba sprzedanych losów za 5 złotych była o 46 większa od liczby sprzedanych losów za 7 złotych. PF
Wartość sprzedanych losów wyniosła: 500 zł. PF

Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba 1725 jest liczbą podzielną przez 15.PF
Liczba 1725 jest wielokrotnością 125. PF
Ukryj Podobne zadania

Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba 81390 jest liczbą podzielną przez 60.PF
Liczba 46125 jest wielokrotnością 375. PF

Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba 16848 jest liczbą podzielną przez 32.PF
Liczba 16848 jest wielokrotnością 81. PF

Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba 3480 jest liczbą podzielną przez 45.PF
Liczba 3480 jest wielokrotnością 16. PF

W szkole Adama w gazetce szkolnej ukazał się artykuł, dotyczący wyboru przez ósmoklasistów szkoły ponadpodstawowej.


PIC


Poniżej zapisano trzy prawdziwe informacje.
I. Ankietę oddało łącznie 150 uczniów.
II. W ankiecie wzięli udział wszyscy uczniowie klas ósmych.
III. Łącznie mniej niż połowa uczniów biorących udział w ankiecie zamierza kontynuować naukę w technikum lub w branżowej szkole.
Które z informacji – I, II, III – wynikają z analizy danych zamieszczonych w treści artykułu?
A) Tylko I i II. B) Tylko I i III. C) Tylko II i III. D) Wszystkie – I, II i III.

Ukryj Podobne zadania

W szkole Adama w gazetce szkolnej ukazał się artykuł, dotyczący wyboru przez ósmoklasistów szkoły ponadpodstawowej.


PIC


Poniżej zapisano trzy informacje.
I. Ankietę oddało łącznie 120 uczniów.
II. Ponad 80 spośród ankietowanych osób zamierza kontynuować naukę w liceum.
III. Łącznie mniej niż połowa uczniów biorących udział w ankiecie zamierza kontynuować naukę w technikum lub w branżowej szkole.
Które z informacji – I, II, III – wynikają z analizy danych zamieszczonych w treści artykułu?
A) Tylko I i II. B) Tylko I i III. C) Tylko II i III. D) Wszystkie – I, II i III.

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.
Jeżeli średnicę podstawy stożka zwiększymy 3 razy, a jego wysokość zmniejszymy 3 razy, to objętość stożka
A) zwiększy się dziewięciokrotnie. B) zmniejszy się trzykrotnie.
C) zwiększy się trzykrotnie. D) nie zmieni się.

Dany jest trójkąt równoramienny o bokach długości |AC | = |BC | = 20 i |AB | = 24 . Odcinek CD jest wysokością trójkąta ABC , a odcinek DE jest wysokością trójkąta CDB (zobacz rysunek).


PIC


Oblicz długość odcinka DE .

Dwa spośród boków trójkąta równoramiennego mają długości 3 cm i 4 cm. Jaką długość może mieć trzeci bok?

Ukryj Podobne zadania

Dwa spośród boków trójkąta równoramiennego mają długości 2 cm i 5 cm. Jaką długość może mieć trzeci bok?

Dwa spośród boków trójkąta równoramiennego mają długości 5 cm i 11 cm. Jaką długość może mieć trzeci bok?

Dwa spośród boków trójkąta równoramiennego mają długości 5 cm i 9 cm. Jaką długość może mieć trzeci bok?

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,30} losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest kwadratem liczby całkowitej, jest równe
A) -4 30 B) 5- 30 C) -6 30 D) 10 30

Ukryj Podobne zadania

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,40} losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest kwadratem liczby całkowitej, jest równe
A) -7 40 B) 5- 40 C) -6 40 D) 10 40

Ze zbioru kolejnych liczb naturalnych {1,2,3 ,4,...,25} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby, która jest kwadratem liczby całkowitej, jest równe
A) -7 25 B) 6- 25 C) -5 25 D) -4 25

Rozwiąż nierówności i zaznacz na osi liczbowej liczby, które spełniają obie nierówności jednocześnie.

{ 8x + 5 > 12x − 3 4 − 7x > 7− 10x.
Ukryj Podobne zadania

Rozwiąż nierówności i zaznacz na osi liczbowej liczby, które spełniają obie nierówności jednocześnie.

{ 5(2x − 3) < 4(3 + x ) 3(6− 2x)− 2(2x − 6) < 0 .

Rozwiąż nierówności i zaznacz na osi liczbowej liczby, które spełniają obie nierówności jednocześnie.

{ (3x− 6)(3x + 4) − x ≤ (3x − 5)(3x + 4) (x− 1)2 ≤ (x − 3)(x − 7).

Na rysunku przedstawiono trójkąt ABC , w którym |AB | = 9 cm oraz odcinek DE równoległy do boku AB trójkąta, którego długość jest równa 6 cm.


PIC


Pole trójkąta ABC jest równe 54 cm 2 , a pole trapezu ABED jest o 25% większe od pola trójkąta CDE . Oblicz wysokość trapezu ABED .

W tabeli zapisano cztery liczby.

I (0,2)4
II (2 ,5 )−2
III(2)4 1 5 ⋅2−4
IV -12 25

Liczba 5− 4 jest równa liczbom
A) I i II B) I i IV C) II i IV D) II i III

Wartość wyrażenia  4 √ --−6 W = (− 3) ⋅ ( 3) pomnożono przez 2. Wartość tego wyrażenia
A) zmniejszyła się o 3 B) zwiększyła się o 3
C) zmniejszyła się o 2 D) zwiększyła się o 2

Ukryj Podobne zadania

Wartość wyrażenia  5 √ --−8 W = (− 3) ⋅ ( 3) pomnożono przez 3. Wartość tego wyrażenia
A) zwiększyła się o 6 B) zwiększyła się o 3
C) zmniejszyła się o 6 D) zwiększyła się o 9

Wartość wyrażenia  6 √ --−10 W = (− 2) ⋅( 2) pomnożono przez 2. Wartość tego wyrażenia
A) zmniejszyła się o 4 B) zwiększyła się o 4
C) zmniejszyła się o 2 D) zwiększyła się o 2

Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 liczbę liczb pierwszych mniejszych od n . Liczba f(31 )− f (12) jest równa
A) 5 B) 6 C) 4 D) 10

Ile kwadratowych płytek o boku 2 dm potrzeba do wyłożenia dna i wewnętrznych ścian basenu o długości 10 m, szerokości 6 m i głębokości 2 m ?

Ukryj Podobne zadania

Objętość prostopadłościennego basenu o szerokości 6 m i długości 10 m jest równa 120 000 litrów. Ile litrów farby potrzeba do pomalowania dna i ścian basenu, jeżeli jeden litr farby wystarcza do pomalowania 8 m 2 powierzchni?

Ile kwadratowych płytek o boku 3 dm potrzeba do wyłożenia dna i wewnętrznych ścian basenu o długości 9 m, szerokości 6 m i głębokości 3 m ?

Strona 3 z 99
spinner