Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Trójkąt/Dowolny

Wyszukiwanie zadań

Środkowa CD trójkąta ABC jest równa bokowi AC . Wyznacz kąty trójkąta ABC wiedząc, że |AB | = 4 i  √ -- |BC | = 2 3 .

Na bokach AB i BC trójkąta ABC wybrano punkty D i E w ten sposób, że odcinek DE jest styczny do okręgu wpisanego w trójkąt ABC oraz trójkąt DBE jest równoboczny. Obwód trójkąta ABC jest równy 20, a długość boku AC jest równa 7. Oblicz pole trójkąta DBE .


PIC


Dany jest trójkąt ABC , w którym sin-∡A- 17 sin∡B = 25 . Na boku AB leży punkt D taki, że |AD | = 1 2 , |DB | = 16 oraz |CD | = 17 . Oblicz długość promienia okręgu opisanego na trójkącie ABC .

W trójkącie kąt między bokami o długościach 8 i 6 jest równy  ∘ 120 . Jaką długość ma trzeci bok trójkąta?

Ukryj Podobne zadania

W trójkącie kąt między bokami o długościach 6 i  √ -- 3 2 jest równy  ∘ 135 . Jaką długość ma trzeci bok trójkąta?

Wykaż, że jeżeli α i β są kątami trójkąta oraz  2 2 2 sin α = sin β + sin (α + β ) to trójkąt ten jest prostokątny.

Punkty  ′ ′ ′ A ,B ,C są środkami boków trójkąta ABC . Pole trójkąta  ′ ′ ′ A B C jest równe 4. Oblicz pole trójkąta ABC .


PIC


Środkowa AM trójkąta ABC ma długość równą połowie długości boku BC . Miara kąta między tą środkową a wysokością AH jest równa 40∘ . Wyznacz miary kątów trójkąta ABC .

Dany jest trójkąt ABC , w którym |AC | > |BC | . Na bokach AC i BC tego trójkąta obrano odpowiednio takie punkty D i E , że zachodzi równość |CD | = |CE | . Proste AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że |∡BAC | = |∡ABC |− 2 |∡AF D | .


PIC


Ukryj Podobne zadania

Dany jest trójkąt ABC , w którym |AC | > |BC | . Na bokach AC i BC tego trójkąta obrano odpowiednio takie punkty D i E , że zachodzi równość |CE | = |DE | . Proste AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że |∡BCA | = |∡BAC |+ |∡AF D | .


PIC


W trójkącie ABC proste zawierające dwusieczne kątów poprowadzonych z wierzchołków A i B przecinają się pod kątem 45∘ . Wiedząc, że AC = 2 i BC = 6 , oblicz

  • długość boku AB trójkąta ABC ;
  • długość środkowej trójkąta ABC poprowadzonej z wierzchołka C .

Wykaż, że jeśli a,b,c są długościami boków trójkąta ostrokątnego takimi, że a < b < c oraz α,β,γ są miarami kątów tego trójkąta leżącymi odpowiednio na przeciwko boków a,b,c , to tg α < tg β < tgγ .

W trójkącie ABC połączono środki boków i otrzymano trójkąt  ′ ′ ′ A B C . Uzasadnij, że trójkąty ABC i A′B ′C ′ są podobne.

Ukryj Podobne zadania

Punkty  ′ ′ ′ A ,B ,C są środkami odpowiednio boków BC ,CA ,AB trójkąta ABC . Uzasadnij, że trójkąt A′B ′C ′ jest przystający do trójkąta AB ′C′ .

W trójkącie ostrokątnym ABC wysokości AD i BE przecinają się w punkcie S . Wiadomo, że |AD |+ |BE | = 20 , |AS | = 8 , |BS | = 4 . Wyznacz długości odcinków DS i ES .

Trójkąt ABC jest ostrokątny oraz |AC | > |BC | . Dwusieczna dC kąta ACB przecina bok AB w punkcie K . Punkt L jest obrazem punktu K w symetrii osiowej względem dwusiecznej dA kąta BAC , punkt M jest obrazem punktu L w symetrii osiowej względem dwusiecznej d C kąta ACB , a punkt N jest obrazem punktu M w symetrii osiowej względem dwusiecznej dB kąta ABC (zobacz rysunek).


PIC


Udowodnij, że na czworokącie KNML można opisać okrąg.

Ukryj Podobne zadania

Na bokach AB , BC i CA trójkąta ABC wybrano odpowiednio punkty K,L i M w ten sposób, że |BK | = |BL | i |CL | = |CM | . Okrąg opisany na trójkącie KLM przecina bok AB tego trójkąta w punkcie N takim, że |AN | < |AK | (zobacz rysunek).


PIC


Udowodnij, że |AN | = |AM | .

W trójkącie ABC bok AB ma długość 8, a bok BC ma długość 10. Dwusieczna kąta ABC przecina bok AC w punkcie D takim, że |CD | = 9 (zobacz rysunek).


PIC


Oblicz długość odcinka AD .

W trójkącie ABC bok AC ma długość b , |∡BAC | = α oraz |∡ABC | = β . Wykaż, że pole trójkąta ABC jest równe

 2 2 2 b-sin--α-+ b--sin-2α-. 2 tgβ 4

Wykaż, że jeżeli kąty wewnętrzne trójkąta spełniają warunek  sinβ+-sinγ- sin α = cosβ+ cos γ to trójkąt ten jest prostokątny.

Na boku AB trójkąta ABC wybrano punkt D w ten sposób, że |AD | = 3|BD | = 3 . Bok BC tego trójkąta ma długość 2. Oblicz stosunek długości odcinków AC i DC .


ZINFO-FIGURE


Trójkąt ostrokątny, którego boki mają długości 17 i 16 ma pole równe 64. Oblicz promień okręgu opisanego na tym trójkącie.

Punkt D leży na boku BC trójkąta ABC oraz |AB | = 14 , |BD | = 1 2 , |CD | = 2 39 i  √ --- |AC | = 4 15 ⋅|AD | . Oblicz pole trójkąta ABC .

Prosta k równoległa do boku AB trójkąta ABC przecina boki AC oraz BC odpowiednio w punktach D i E (zobacz rysunek). Wiadomo, że pole trójkąta DEC wynosi 4 cm 2 , zaś pole trapezu ABED jest równe 8 cm 2 . Wykaż, że |AD-| √ -- |DC | = 3− 1 .


PIC


Ukryj Podobne zadania

Prosta k równoległa do boku AB trójkąta ABC przecina boki AC oraz BC odpowiednio w punktach D i E (zobacz rysunek). Wiadomo, że pole trójkąta DEC wynosi 2 cm 2 , zaś pole trapezu ABED jest równe 8 cm 2 . Wykaż, że |AD-| √ -- |DC | = 5− 1 .


PIC


Strona 2 z 11
spinner