Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe

Wyszukiwanie zadań

Suma kwadratów długości trzech boków trójkąta prostokątnego jest równa 162. Zatem przeciwprostokątna może mieć długość:
A) 12 B) 81 C) 54 D) 9

Ukryj Podobne zadania

Suma kwadratów długości trzech boków trójkąta prostokątnego jest równa 98. Zatem przeciwprostokątna ma długość:
A) 49 B)  √ -- 7 2 C) 7 D) 9

Dany jest prostopadłościan ABCDEF GH , w którym podstawy ABCD i EF GH są kwadratami o boku długości 6. Przekątna BH tego prostopadłościanu tworzy z przekątną AH ściany bocznej ADHE kąt o mierze 30 ∘ (zobacz rysunek).


ZINFO-FIGURE


Przekątna BH tego prostopadłościanu ma długość równą
A)  √ -- 4 3 B)  √ -- 6 3 C) 12 D) 12√ 2-

Pierwszy wyraz ciągu arytmetycznego jest równy 5, a suma jego pięciu początkowych wyrazów wynosi 55. Czwarty wyraz tego ciągu jest równy
A) 12 B) 13 C) 14 D) 15

Ukryj Podobne zadania

Pierwszy wyraz ciągu arytmetycznego wynosi 7, suma siedmiu początkowych wyrazów ciągu jest równa (− 1 4) . Czwarty wyraz ciągu jest równy
A) − 11 B) − 3 C) − 2 D) 16

Przekrój osiowy walca jest kwadratem o boku długości 6. Objętość tego walca jest równa


PIC


A) 1 8π B) 5 4π C) 10 8π D) 216π

Ukryj Podobne zadania

Przekrój osiowy walca jest kwadratem o boku 10. Objętość tego walca jest równa


PIC


A) 5 00π B) 100π C) 250 π D) 125π

Przekrój osiowy walca jest kwadratem o boku długości 8. Objętość tego walca jest równa


PIC


A) 3 2π B) 6 4π C) 12 8π D) 256π

Jeżeli przekrój osiowy walca jest kwadratem o boku 4, to objętość walca jest równa
A) 8π B) 16π C) 28 π D) 64π

Punkt A = (− 19,27) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne
A) (76,− 57 ) B) (38,− 54) C) (57,− 81) D) (19,− 27)

Ukryj Podobne zadania

Punkt A = (13,− 21) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne
A) (− 13,21 ) B) (52,− 84) C) (− 39,63) D) (26,− 42)

Dane są punkty A = (2,2) , B = (− 1,4) ,  ( 3) C = − 1,2 i D = (2,− 1) . Pole czworokąta ABCD jest równe
A) 10,5 B) 16,5 C) 9 D) 8,25

Stosunek pól powierzchni dwóch kul jest równy 1:9. Wobec tego stosunek objętości tych kul jest równy
A) 1:3 B) 1:9 C) 1:27 D) 1:81

Ukryj Podobne zadania

Stosunek pól powierzchni dwóch kul jest równy 1:16. Wobec tego stosunek objętości tych kul jest równy
A) 1:256 B) 1:64 C) 1:16 D) 1:4

Stosunek pól powierzchni dwóch kul jest równy 1:4. Wobec tego stosunek objętości tych kul jest równy
A) 1:2 B) 1:8 C) 1:4 D) 1:16

Jeśli promień kuli zwiększymy o 30%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%

Ukryj Podobne zadania

Jeśli promień kuli zmniejszymy o 50%, to pole powierzchni kuli zmaleje o:
A) 30% B) 60% C) 75% D) ponad 90%

Jeśli promień kuli zwiększymy o 50%, to pole powierzchni kuli wzrośnie o:
A) 30% B) 60% C) 69% D) ponad 100%

Automat biletowy drukuje 30 biletów w ciągu 2 minut i 6 sekund. Który wzór opisuje zależność między liczbą wydrukowanych biletów (x ), a czasem ich druku w sekundach (y ), jeżeli tempo drukowania biletów nie ulega zmianie?
A) y = 126x B)  4,2- y = x C) y = 4 ,2x D)  -x- y = 4,2

Ukryj Podobne zadania

Jeżeli odcinek AB podzielimy na 80 równych części, to każda część ma długość 0,15 cm. Który wzór opisuje zależność między liczbą równych części (x ), na którą dzielimy odcinek AB , a długością (y ) jednej takiej części w milimetrach?
A)  1,2- y = x B)  120- y = x C) y = 120x D)  -x- y = 1,2

Ciąg (an) jest ciągiem geometrycznym o ilorazie q = 2 , w którym a1 + a2 + a3 = 17 . Suma a4 + a5 + a6 jest równa
A) 136 B) 68 C) 34 D) 289

Ukryj Podobne zadania

Ciąg (an) jest ciągiem geometrycznym o ilorazie q = 3 , w którym a1 + a2 + a3 = 13 . Suma a4 + a5 + a6 jest równa
A) 39 B) 351 C) 117 D) 507

Odległość między środkami stycznych wewnętrznie okręgów o promieniach r i R jest równa 7. Odległość między środkami stycznych zewnętrznie okręgów o promieniach r i R jest równa 23. Promienie r i R mają długości
A) 6 i 17 B) 11 i 12 C) 10 i 13 D) 8 i 15

Wyrażenie cos2α−-sin2α- sin2α+cos2α 1−sin 2α ⋅ sin 2α+ 1 , gdzie α jest kątem ostrym, jest równe
A) sin 22α B) 1− tg 22α C) --1--- cos22α D) cos22α − sin2 2α

W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta α jest równa √ -- 3 . Zatem
A) α = 60∘ B) α ∈ (40∘,6 0∘) C) α ∈ (30∘,4 0∘) D) α = 30∘

Ukryj Podobne zadania

W trójkącie prostokątnym przeciwprostokątna ma długość 3, a długość przyprostokątnej leżącej naprzeciwko kąta α jest równa √ -- 2 . Zatem
A) α = 45∘ B) α ∈ (40∘,6 0∘) C) α ∈ (30∘,4 0∘) D) α < 30∘

Pole rombu o kącie ostrym  ∘ 60 jest równe  √ -- 8 3 . Bok tego rombu ma długość
A) 6 B) 2 C)  √ -- 8 3 D) 4

Ukryj Podobne zadania

Pole rombu o kącie ostrym  ∘ 60 jest równe  √ -- 18 3 . Bok tego rombu ma długość
A) 9 B) 3 C) 6 D)  √ -- 12 3

Funkcje f(x) = 3x − 1 i g(x) = 2x + 5 przyjmują równą wartość dla
A) x = 1 B) x = 4 C) x = 5 D) x = 6

Ukryj Podobne zadania

Funkcje f(x) = 3x + 1 i g(x) = 2x + 5 przyjmują równą wartość dla
A) x = 1 B) x = 4 C) x = 5 D) x = 6

Funkcje f(x) = 5x − 2 i g(x) = 4x + 3 przyjmują równą wartość dla
A) x = 1 B) x = 4 C) x = 5 D) x = 6

Funkcje f(x) = − 3x + 2 i g(x) = 2x + 7 przyjmują równą wartość dla
A) x = 95 B) x = − 1 C) x = − 9 5 D) x = 1

Długości boków trójkąta wychodzących z wierzchołka kąta ostrego α wynoszą odpowiednio 2 dm i 40 cm. Jaką miarę ma kąt α , jeśli pole tego trójkąta jest równe 2 dm 2 ?
A) 45∘ B) 3 0∘ C) 60∘ D)  ∘ 75

Z pudełka zawierającego dwa rodzaje monet wybieramy losowo dwie. Prawdopodobieństwo wybrania co najmniej jednej monety dwuzłotowej jest równe 197 , a prawdopodobieństwo wybrania co najmniej jednej monety pięciozłotowej jest równe 10 17 . Zatem prawdopodobieństwo wybrania dokładnie jednej monety dwuzłotowej jest równe
A)  9 17 B) 15 17- C)  2 17 D) -902 17

Dany jest prostopadłościan ABCDEF GH , w którym prostokąty ABCD i EF GH są jego podstawami. Odcinek BH jest przekątną tego prostopadłościanu. Na którym rysunku prawidłowo oznaczono i podpisano kąt α pomiędzy przekątną BH prostopadłościanu a jego ścianą boczną ADHE ?


ZINFO-FIGURE


Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 15. Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod α takim, że  √- cosα = -2- 3 . Długość przekątnej tego graniastosłupa jest równa
A)  √ -- 15 2 B) 45 C)  √ -- 5 2 D) 10

Ukryj Podobne zadania

Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 12. Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod α takim, że  √- cosα = 2-2- 3 . Długość przekątnej tego graniastosłupa jest równa
A) 18 B)  √ -- 1 2 2 C)  √ -- 6 2 D) 8

Liczba --2016!--- 2015!+2014! jest równa
A) 2015 B) 21015- C) 1 D) 2016

Strona 168 z 184
spinner