Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe

Wyszukiwanie zadań

Ciąg (an) jest określony wzorem  n+1 an = 2 ⋅(− 1) + 5 dla każdej liczby naturalnej n ≥ 1 . Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa
A) 3 B) 7 C) 50 D) 100

Wyrażenie (n+2)!⋅(n−-2)!- n!⋅n! dla liczby naturalnej n ≥ 2 jest równe
A) n2 − 4 B) (n 2 − 4)(n2 − 1) C) n2+3n+-2 n2−n D) n+2- n

Ukryj Podobne zadania

Wyrażenie (n+2)!⋅(n−-1)!- (n+1)!⋅n! dla liczby naturalnej n ≥ 1 jest równe
A) n2 + n − 2 B) (n 2 − 4)(n2 − 1) C) n2+n−-2 n2+n D) n+2- n

Ukryj Podobne zadania

Prosta l o równaniu  2 y = m x + 3 jest równoległa do prostej k o równaniu y = (4m − 4 )x− 3 . Zatem
A) m = 2 B) m = − 2 C)  √ -- m = − 2 − 2 2 D)  √ -- m = 2+ 2 2

Prosta l o równaniu  2 y = −m x + 5 jest równoległa do prostej k o równaniu y = (4m + 4 )x− 5 . Zatem
A) m = 2 B) m = − 2 C)  √ -- m = − 2 − 2 2 D)  √ -- m = 2+ 2 2

Proste o równaniach y = (m + 3 )x+ 2 i y = (3m − 1)x − 2 są równoległe, gdy
A) m = 2 B) m = 3 C) m = 0 D) m = 1

Podstawą ostrosłupa jest prostokąt ABCD o bokach długości: |AB | = 4 i |AD | = 3 . Krawędź boczna DS jest prostopadła do podstawy i ma długość 3 (zobacz rysunek).


PIC


Jeżeli α jest katem pomiędzy krawędziami bocznymi SB i SC , to
A) c osα = 3 5 B)  √ -- co sα = 2-34- 17 C) co sα = 45 D)  √-- cosα = 53344-

Ukryj Podobne zadania

Podstawą ostrosłupa jest kwadrat ABCD o boku długości 4. Krawędź boczna DS jest prostopadła do podstawy i ma długość 3 (zobacz rysunek).


PIC


Jeżeli α jest katem pomiędzy krawędziami bocznymi SB i SC , to
A) c osα = 3 5 B)  √ -- co sα = 5-41- 41 C) co sα = 45 D)  √-- cosα = 53344-

Ukryj Podobne zadania

Punkty A = (− 3,2) i C = (5,− 4) są końcami przekątnej kwadratu ABCD . Promień okręgu opisanego na tym kwadracie jest równy
A) 100 B) 50 C) 10 D) 5

Wszystkich liczb naturalnych sześciocyfrowych, w których zapisie dziesiętnym każda z cyfr: 0 i 5 występuje dokładnie 3 razy jest
A) 10 B) 32 C) 16 D) 12

Dwa przeciwległe wierzchołki prostokąta mają współrzędne A = (6,10) i C = (− 8,− 4) . Środek okręgu opisanego na tym prostokącie leży na prostej
A) y − x = 4 B) y − x = 3 C) x − y = 4 D) x − y = 3

Ukryj Podobne zadania

Liczba √3 -------- 108⋅ 16 jest równa
A) 12 B) 48 C)  √ -- 27 34 D)  √ --- 4 354

Liczby 4 i 6 są miejscami zerowymi funkcji kwadratowej f . Zatem osią symetrii wykresu funkcji f jest prosta o równaniu:
A) x = 10 B) x = 2 C) y = 5 D) x = 5

Obwód trójkąta ABC wynosi 24 cm. Połączono środki boków tego trójkąta i otrzymano trójkąt DEF , którego obwód jest równy
A) 6 cm B) 8 cm C) 12 cm D) 18 cm

Układ równań { 6x = 10y + 1 8 15y− 9x + 27 = 0
A) ma dokładnie jedno rozwiązanie. B) ma dwa rozwiązania.
C) ma nieskończenie wiele rozwiązań. D) nie ma rozwiązań.

Ukryj Podobne zadania

Układ równań { 1 2 4x − 3y = 2 y− 38x = − 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { x+ 2y = 1 −4x − 8y = − 4.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 1 2 4x − 3y = 2 y− 38x = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Układ równań { x− 2y = 3 −4x + 8y = − 12.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 2x− 3y = − 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 2x− 3y = 5 −4x + 6y = − 10.
A) nie ma rozwiązań B) ma dokładnie jedno rozwiązanie
C) ma dokładnie dwa rozwiązania D) ma nieskończenie wiele rozwiązań

Układ równań { 3 y− 8x = − 3 14x − 23y = 3
A) nie ma rozwiązań. B) ma dokładnie jedno rozwiązanie.
C) ma dokładnie dwa rozwiązania. D) ma nieskończenie wiele rozwiązań.

Na rysunku przedstawiono fragment wykresu funkcji f określonej wzorem f (x) = c(ax + b)2 − c .


PIC


Współczynniki a,b i c spełniają warunki:
A) ab < 0 , c > 0 B) ab < 0, c < 0 C) ab > 0 , c > 0 D) ab > 0 , c < 0

Wartość wyrażenia  2 √ -- 2 √ -- log21 6 2− lo g22 2 jest równa
A) 9 B) 18 C) − 3 D) 4

Dany jest trójkąt o wierzchołkach A = (− 3 ,− 2 ),B = (2,4),C = (6,− 4) . Długość środkowej poprowadzonej z wierzchołka A jest równa
A) 4 B) 6 C) √ -- 6 D) √ 53-

Ukryj Podobne zadania

Dany jest trójkąt o wierzchołkach A = (− 3 ,− 2 ),B = (3,4),C = (6,− 4) . Długość środkowej poprowadzonej z wierzchołka C jest równa
A) 11 B) √ --- 11 C) √ --- 61 D) 3√ 5-

Dany jest trójkąt o wierzchołkach A = (− 3 ,− 2 ),B = (2,2),C = (8,− 2) . Długość środkowej poprowadzonej z wierzchołka A jest równa
A)  √ --- 2 17 B)  √ -- 2 2 C) √ 66- D) √ 34-

Dany jest trójkąt o wierzchołkach A = (4 ,−3 ),B = (4,1),C = (− 6,− 2) . Długość środkowej poprowadzonej z wierzchołka C jest równa
A) √ ---- 101 B) √ ---- 102 C) 10 D) √ 10-

Równanie x2−3x+-2 x2−4 = 0 ma:
A) 2 pierwiastki B) 3 pierwiastki C) 1 pierwiastek D) 4 pierwiastki

Ukryj Podobne zadania

Wszystkimi rozwiązaniami równania wymiernego x2−x−-2 x2−2x = 0
A) x ∈ { −1 } B) x ∈ {0 ,2} C) x ∈ {− 1 ,2 } D) x ∈ {− 1,0,2}

Miary kątów czworokąta tworzą ciąg geometryczny o ilorazie 2. Największy kąt tego czworokąta ma miarę
A) 24∘ B) 144∘ C) 15 0∘ D) 19 2∘

Ukryj Podobne zadania

Miary kątów trójkąta tworzą ciąg geometryczny o ilorazie 4. Miara największego z nich jest równa
A) 17 ⋅360∘ B) 17 ⋅5 40∘ C) 1 ⋅630 ∘ 7 D) 1 ⋅960∘ 7

Na rysunku przedstawiono okrąg o środku O , który jest styczny do wszystkich boków trapezu równoramiennego ABCD . Ramiona AD i BC są styczne do tego okręgu odpowiednio w punktach K i L . Kąt wypukły KOL ma miarę 1 50∘ .


PIC


Miara α kąta ostrego tego trapezu jest równa
A) 75∘ B) 8 0∘ C) 85∘ D) 65∘

Na wykresie przedstawiono zależność log K (t) , gdzie K(t) jest liczbą bakterii w próbce po czasie t wyrażonym w godzinach, jaki upłynął od chwili t = 0 rozpoczęcia obserwacji.


ZINFO-FIGURE


Gdy upłynęły dokładnie trzy godziny od chwili t = 0 , liczba K bakterii była równa
A) 3 B) 100 C) 1000 D) 10000

Zbiorem rozwiązań nierówności √ ---- −x < 4 jest przedział
A) (− 16,0⟩ B) (− ∞ ,16⟩ C) (− ∞ ,4⟩ D) (9 ,+∞ )

Strona 3 z 184
spinner