Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria

Wyszukiwanie zadań

Przekątna prostokąta ma długość 12 cm i tworzy z jednym z boków kąt o mierze 30∘ . Pole powierzchni tego prostokąta jest równe
A)  √ -- 36 2 cm 2 B)  √ -- 24 3 cm 2 C) 36√ 3-cm 2 D) 24√ 2-cm 2

Stosunek pól kół wpisanego i opisanego na kwadracie o boku długości a jest równy:
A) 1 2 B) √ -- 2 C) 1 4 D) √1- 2

Ukryj Podobne zadania

Stosunek pola kwadratu wpisanego w okrąg do pola kwadratu opisanego na tym okręgu wynosi
A) 14 B) √1- 2 C) 12 D) -1-- 2√ 2

Stosunek pola koła wpisanego w kwadrat do pola koła opisanego na tym kwadracie jest równy:
A) 12 B) 14 C) √1- 2 D) -1-- 2√ 2

Sinus kąta ostrego równoległoboku jest równy 3 5 . Suma cosinusów wszystkich kątów wewnętrznych tego równoległoboku jest równa
A) 0 B) 165 C) − 156 D) 12 5

Przyprostokątne trójkąta prostokątnego mają długości 1 i 7. Sinus najmniejszego kąta tego trójkąta jest równy
A) √ - --2 10 B) 1 7 C) √- -2- 5 D) -7-- √ 50

Ukryj Podobne zadania

Przyprostokątne w trójkącie prostokątnym mają długości 24 i 10 . Sinus najmniejszego kąta jest równy
A) 1206 B) 2426- C) 1204 D) 26 24

W trójkącie prostokątnym o długościach przyprostokątnych 2 i 5 cosinus większego z kątów ostrych jest równy
A) 52 B) 25 C) √-2- 29 D) -5-- √ 29

Przyprostokątne trójkąta prostokątnego mają długości 3 i 9. Sinus najmniejszego kąta tego trójkąta jest równy
A)  √ -- 3--10 10 B) 1 3 C) √-- -10- 10 D) √ -- -3100

Przyprostokątne trójkąta prostokątnego mają długości 8 i 6. Sinus większego z kątów ostrych tego trójkąta jest równy
A) 35 B) 34 C) 45 D) 4 3

Przyprostokątne trójkąta prostokątnego mają długości 2 i 6. Sinus najmniejszego kąta tego trójkąta jest równy
A)  √ -- 2--10 10 B) 1 3 C) √-- -10- 10 D) -1-- √ 40

W trójkącie ABC miary kątów wynoszą:  ∘ |∡A | = 2α+ 45 , |∡B | = 3α , |∡C | = α − 15 ∘ . Wówczas
A) α = 30∘ B) α = 25∘ C) α = 5 5∘ D) α = 35∘

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 2:3. Ramię jest nachylone do podstawy pod kątem α , takim, że
A)  √ - sin α = 2-2- 3 B) sin α = 2 3 C) co sα = 23 D)  2√2 cosα = -3--

Ukryj Podobne zadania

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 6:4. Ramię jest nachylone do podstawy pod kątem α , takim, że
A) sin α = 3 4 B)  √ - sinα = --7 4 C)  3 co sα = 2 D)  √7 cosα = -4-

Stosunek długości podstawy do ramienia trójkąta równoramiennego jest równy 4:3. Ramię jest nachylone do podstawy pod kątem α , takim, że
A)  √- cosα = -5- 3 B) sinα = 2 3 C) co sα = 32 D)  √5 sin α = 3--

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ACB | = 120∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 45 B)  ∘ 5 5 C)  ∘ 65 D)  ∘ 75

Ukryj Podobne zadania

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ABC | = 140∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 45 B)  ∘ 8 0 C)  ∘ 70 D)  ∘ 60

Dany jest trójkąt równoramienny ABC o kącie między ramionami |∡ABC | = 160∘ . Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D . Miara kąta DOB jest równa
A)  ∘ 85 B)  ∘ 5 5 C)  ∘ 65 D)  ∘ 75

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


ZINFO-FIGURE


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Ukryj Podobne zadania

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


PIC


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


PIC


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Długość jednego boku kwadratu K skrócono o 20%, a długość drugiego boku skrócono o 40%. W wyniku tych operacji otrzymano prostokąt P . Stosunek długości przekątnej kwadratu K do długości przekątnej prostokąta P jest równy
A) 0,48 B) √ -- 2 C) 1 D) 2

Przekątna AC jest średnicą okręgu opisanego na czworokącie ABCD . Punkt przecięcia przekątnych dzieli przekątną AC na odcinki o długościach 3 i 6. Zatem długość okręgu opisanego na czworokącie ABCD jest równa
A) 10π B) 9π C) 18 π D) 11π

Dany jest romb o boku długości 4 i polu równym 8. Kąt rozwarty tego rombu ma miarę
A) 120 ∘ B) 135∘ C) 15 0∘ D) 17 5∘

Pole trójkąta prostokątnego równoramiennego wynosi  √ -- 2 2 2 cm . Zatem przeciwprostokątna ma długość:
A)  ∘ ----- 2 2√ 2 cm B)  -- √ 2 cm C) √4-- 8 cm D) √4-- 4 cm

Ukryj Podobne zadania

Pole trójkąta prostokątnego równoramiennego wynosi  √ -- 2 4 2 cm . Zatem przeciwprostokątna ma długość:
A)  ∘ ----- 2 2√ 2 cm B)  -- 4√ 2 cm C)  √4-- 4 2 cm D) √4 -- 8 cm

Pole trójkąta prostokątnego równoramiennego wynosi  √ -- 2 3 2 cm . Zatem przeciwprostokątna ma długość:
A)  ∘ ----- 2 2√ 2 cm B)  -- √ 6 cm C)  √4--- 2 12 cm D)  ∘ -√--- 2 3 2 cm

Pole trójkąta prostokątnego równoramiennego jest równe  2 8 cm . Przeciwprostokątna tego trójkąta ma długość
A) 8 cm B) 4 cm C)  √ -- 4 2 cm D)  √ -- 2 2 cm

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 6, a przeciwprostokątna AB ma długość  √ -- 3 5 . Wtedy tangens kąta ostrego CAB tego trójkąta jest równy
A) √-5 5 B) 2√-5 5 C) 1 2 D) 2

W trapezie ABCD , w którym AB ∥ CD , przedłużono ramiona AD i BC do przecięcia się w punkcie E . Wiadomo, że |AD | = 6 cm , |DE | = 2 cm , |AB | = 10 cm . Wobec tego odcinek DC ma długość
A) 2,5 cm B) 2 cm C) 3 cm D) 3,5 cm

Ukryj Podobne zadania

W trapezie ABCD , w którym AB ∥ CD , przedłużono ramiona AD i BC do przecięcia się w punkcie E . Wiadomo, że |AD | = 6 cm ,|DE | = 2 cm ,|DC | = 4 cm . Wobec tego odcinek AB ma długość
A) 15,5 cm B) 15 cm C) 16 cm D) 16,5 cm

W trapezie ABCD , w którym AB ∥ CD , przedłużono ramiona AD i BC do przecięcia się w punkcie E . Wiadomo, że |AD | = 5 cm ,|DE | = 1 cm ,|BC | = 10 cm . Wobec tego odcinek EC ma długość
A) 2,5 cm B) 2 cm C) 3 cm D) 3,5 cm

Kąt α jest kątem ostrym w trójkącie prostokątnym i  5 sin α = 7 . Wówczas
A)  √ - tg α = 546- B)  √- tg α = 162- C)  5√-6 tg α = 12 D)  √6- tgα = 4

W rombie ABCD dłuższa przekątna AC ma długość 12 i tworzy z bokiem AB kąt o mierze 30 ∘ (zobacz rysunek).


ZINFO-FIGURE


Pole rombu ABCD jest równe
A) 24 B) 36 C)  √ -- 24 3 D) 36√ 2-

Ukryj Podobne zadania

W rombie ABCD dłuższa przekątna AC ma długość 8, a kąt rozwarty tego rombu ma miarę 120∘ (zobacz rysunek).


ZINFO-FIGURE


Pole rombu ABCD jest równe
A)  √ - 16--3 3 B) 8 C)  √- 32-3- 3 D) 16

W trójkącie EF G bok EF ma długość 21. Prosta równoległa do boku EF przecina boki EG i FG trójkąta odpowiednio w punktach H oraz I (zobacz rysunek) w taki sposób, że |HI | = 7 i |GI | = 3 . Wtedy długość odcinka FI jest równa


PIC


A) 6 B) 9 C) 12 D) 17

Ukryj Podobne zadania

W trójkącie EF G bok EF ma długość 24. Prosta równoległa do boku EF przecina boki EG i FG trójkąta odpowiednio w punktach H oraz I (zobacz rysunek) w taki sposób, że |HI | = 8 i |GI | = 5 . Wtedy długość odcinka FI jest równa


PIC


A) 6 B) 9 C) 10 D) 12

Przekątna prostokątna ma długość 6, a długość jego krótszego boku jest równa  √ -- 2 3 . Kąt rozwarty α między przekątnymi tego prostokąta spełnia warunek
A) α ∈ (70 ∘,80∘) B) α ∈ (12 0∘,140∘) C)  ∘ ∘ α ∈ (100 ,120 ) D)  ∘ ∘ α ∈ (9 0 ,100 )

Ramię trójkąta równoramiennego ABC ma długość 8 cm i tworzy z podstawą kąt o mierze 75 ∘ . Pole tego trójkąta jest równe
A) 4 cm 2 B) 32 cm 2 C) 8 cm 2 D) 1 6 cm 2

Ukryj Podobne zadania

Dany jest trójkąt równoramienny, w którym ramię o długości 10 tworzy z podstawą kąt 6 7,5∘ . Pole tego trójkąta jest równe
A)  √ -- 25 3 B)  √ -- 50 3 C) 25 √ 2- D) 50 √ 2-

w trójkącie równoramiennym ramię ma długość 16 i tworzy z podstawą trójkąta kąt o mierze 75∘ . Pole tego trójkąta jest równe
A) 128 B) 64 C)  √ -- 128 2 D) 64√ 3-

Dany jest trójkąt równoramienny, w którym ramię o długości 20 tworzy z podstawą kąt 6 7,5∘ . Pole tego trójkąta jest równe
A)  √ -- 100 3 B)  √ -- 100 2 C) 200 √ 3- D) 20 0√ 2-

Punkty A ,B,C leżą na okręgu o środku S . Punkt D jest punktem przecięcia cięciwy AC i średnicy okręgu poprowadzonej z punktu B . Miara kąta BSC jest równa α , a miara kąta ADB jest równa γ (zobacz rysunek).


ZINFO-FIGURE


Wtedy kąt ABD ma miarę
A) α2 + γ − 180∘ B) 180 ∘ − α2 − γ C) 180 ∘ − α − γ D) α+ γ − 180∘

Strona 21 z 28
spinner