Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Zadania testowe/Geometria/Planimetria/Okrąg i koło

Wyszukiwanie zadań

Na rysunku przedstawiono okrąg o środku S i kąt wpisany o mierze  ∘ 35 .


PIC


Zaznaczony na rysunku kąt α ma miarę
A) 40∘ B) 5 0∘ C) 70∘ D) 30∘

Środek okręgu o promieniu 10 jest oddalony od cięciwy AB tego okręgu o 6. Długość tej cięciwy jest równa
A) 10 B) 12 C) 14 D) 16

Ukryj Podobne zadania

Środek okręgu o promieniu 5 jest oddalony od cięciwy AB tego okręgu o 3. Długość tej cięciwy jest równa
A) 5 B) 6 C) 7 D) 8

Punkty A i B dzielą okrąg na dwa łuki, przy czym miary kątów wpisanych opartych na tych łukach różnią się o 20 ∘ . Wynika stąd, że większy z tych katów ma miarę
A) 100 ∘ B) 200∘ C)  ∘ 50 D)  ∘ 80

Dany jest okrąg o środku S i promieniu r , długość łuku  1 AB = 4 ⋅ 2π ⋅r (patrz rysunek).


PIC


Miara kąta α jest równa
A) 40∘ B) 4 5∘ C) 50∘ D) 55∘

Ukryj Podobne zadania

Dany jest okrąg o środku S i promieniu r , długość łuku  1 AB = 5 ⋅ 2π ⋅r (patrz rysunek).


PIC


Miara kąta α jest równa
A) 36∘ B) 3 0∘ C) 45∘ D) 72∘

W kole poprowadzono cięciwę tworzącą ze średnicą kąt  ∘ 30 . Cięciwa dzieli średnicę na dwa odcinki o długościach 6 cm i 2 cm. Zatem odległość środka okręgu od cięciwy jest równa
A) 2 cm B) 1 cm C) √ -- 3 cm D) √ -- 2 cm

Ukryj Podobne zadania

W kole poprowadzono cięciwę tworzącą ze średnicą kąt  ∘ 60 . Cięciwa dzieli średnicę na dwa odcinki o długościach 6 cm i 2 cm. Zatem odległość środka okręgu od cięciwy jest równa
A) 2 cm B) 1 cm C) √ -- 3 cm D) √ -- 2 cm

W kole poprowadzono cięciwę tworzącą ze średnicą kąt  ∘ 45 . Cięciwa dzieli średnicę na dwa odcinki o długościach 6 cm i 2 cm. Zatem odległość środka okręgu od cięciwy jest równa
A) 2 cm B) 1 cm C) √ -- 3 cm D) √ -- 2 cm

Proste m i n są styczne do okręgu i przecinają się pod kątem  ∘ 30 .


PIC


Miara kąta α jest równa
A) 210 ∘ B) 230∘ C) 24 0∘ D) 27 0∘

Ukryj Podobne zadania

Proste m i n są styczne do okręgu i przecinają się pod kątem  ∘ 40 .


PIC


Miara kąta α jest równa
A) 210 ∘ B) 220∘ C) 24 0∘ D) 27 0∘

Punkty A ,B ,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na dziesięć równych łuków. Oblicz miarę kąta DF S zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 60 ∘ D) 45∘

Ukryj Podobne zadania

Punkty A ,B ,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na dziesięć równych łuków. Oblicz miarę kąta SHE zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 36 ∘ D) 45∘

Odcinek AB jest średnicą okręgu o środku w punkcie O i promieniu r (zobacz rysunek). Cięciwa AC ma długość  √ -- r 3 , więc


PIC


A) |∡AOC | = 130∘ B) |∡ABC | = 90∘ C) |∡BOC | = 60∘ D) |∡BAC | = 45∘

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).


PIC


Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe
A) 14 B) 2 √ 33- C)  √ --- 4 3 3 D) 12

Ukryj Podobne zadania

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 3 w punkcie P przechodzi przez środek okręgu o promieniu 4 (zobacz rysunek).


PIC


Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P , jest równe
A) 21 B) 3 √ 40- C)  √ --- 3 1 0 D) 24

Odległość środka okręgu od prostej jest równa 0. Zatem liczba punktów wspólnych okręgu i prostej jest równa
A) 0 B) 1 C) 2 D) 3

Ukryj Podobne zadania

Odległość środka okręgu o średnicy 14 od prostej jest równa 7. Zatem liczba punktów wspólnych okręgu i prostej jest równa:
A) 0 B) 1 C) 2 D) 3

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


ZINFO-FIGURE


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Ukryj Podobne zadania

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


PIC


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Trójkąty ABC i ACD są wpisane w okrąg o środku O . Odcinek AB jest średnicą okręgu.


PIC


Miara kąta α zaznaczonego na rysunku jest równa
A) 105 ∘ B) 115∘ C) 10 0∘ D) 95 ∘

Punkty A ,B,C leżą na okręgu o środku S . Punkt D jest punktem przecięcia cięciwy AC i średnicy okręgu poprowadzonej z punktu B . Miara kąta BSC jest równa α , a miara kąta ADB jest równa γ (zobacz rysunek).


ZINFO-FIGURE


Wtedy kąt ABD ma miarę
A) α2 + γ − 180∘ B) 180 ∘ − α2 − γ C) 180 ∘ − α − γ D) α+ γ − 180∘

Prosta k jest styczna w punkcie A do okręgu opisanego na trójkącie równoramiennym ABC , w którym |AB | = |CB | = 6 . Prosta l zawiera punkty B i C i przecina prostą k w punkcie D , przy czym |CD | = 2 i |AD | = 4 (zobacz rysunek).


ZINFO-FIGURE


Długość odcinka AC jest równa
A) 3 B) 4 3 C) √ --- 12 D) √ -- 8 + 2

Odcinek AB jest średnicą okręgu o środku S . Prosta k jest styczna do tego okręgu w punkcie A . Prosta l przecina ten okrąg w punktach B i C . Proste k i l przecinają się w punkcie D , przy czym |BC | = 4 i |CD | = 3 (zobacz rysunek).


ZINFO-FIGURE


Odległość punktu A od prostej l jest równa
A) 7 2 B) 5 C) √ --- 12 D) √ -- 3 + 2

Ukryj Podobne zadania

Odcinek AB jest średnicą okręgu o środku S . Prosta k jest styczna do tego okręgu w punkcie A . Prosta l przecina ten okrąg w punktach B i C . Proste k i l przecinają się w punkcie D , przy czym |BC | = 6 i |CD | = 4 (zobacz rysunek).


ZINFO-FIGURE


Odległość punktu A od prostej l jest równa
A) 8 B) 5 C)  √ -- 2 6 D) 2√ 3-+ 4

Prostokąt ABCD jest wpisany w okrąg. Prosta k jest styczna do tego okręgu w punkcie A i tworzy z odcinkiem AB kąt o mierze α . Przekątne prostokąta ABCD przecinają się pod kątem o mierze 124 ∘ (zobacz rysunek).


ZINFO-FIGURE


Miara kąta α jest równa
A) 32∘ B) 5 6∘ C) 62∘ D) 28∘

Punkty A ,B,C ,D ,E,F ,G,H dzielą okrąg na 8 równych łuków. Miara kąta GAD zaznaczonego na rysunku jest równa


PIC


A) 4 5∘ B) 62,5∘ C) 67,5 ∘ D) 75∘

Ukryj Podobne zadania

Punkty A ,B,C ,D ,E,F ,G okręgu są wierzchołkami siedmiokąta foremnego. Miara zaznaczonego na rysunku kąta wpisanego BDF jest równa


PIC


A)  ∘ 7207-- B)  ∘ 1807-- C) 1080∘ 7 D) 540∘- 7

Punkty A ,B,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na 10 równych łuków. Oblicz miarę kąta wpisanego AGE zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 60 ∘ D) 144 ∘

Punkty A ,B,C ,D ,E,F ,G,H ,I,J dzielą okrąg o środku S na 10 równych łuków. Oblicz miarę kąta wpisanego BGE zaznaczonego na rysunku.


PIC


A) 5 4∘ B) 72∘ C) 60 ∘ D) 45∘

Punkty A ,B,C ,D ,E,F ,G,H ,I dzielą okrąg na 9 równych łuków. Miara zaznaczonego na rysunku kąta wpisanego AHD jest równa


PIC


A) 9 0∘ B) 60∘ C) 45 ∘ D) 30∘

Punkty A ,B,C ,D ,E,F ,G,H dzielą okrąg na 8 równych łuków. Miara kąta GAE zaznaczonego na rysunku jest równa


PIC


A) 4 5∘ B) 62,5∘ C) 67,5 ∘ D) 75∘

W okręgu o promieniu 6 poprowadzono cięciwę CD równoległą do średnicy AB tego okręgu i taką, że |CD | = 6 (zobacz rysunek).


PIC


Odległość cięciwy CD od średnicy AB jest równa
A) 4√ 3- B) 3√ 3- C)  √ -- 2 3 D) 4

Punkt S jest środkiem okręgu.


PIC


Miara kąta środkowego α jest równa
A) 36∘ B) 72∘ C) 12 0∘ D) 14 4∘

Trójkąt ABC jest wpisany w okrąg o środku O . Miara kąta CAO jest równa 70 ∘ (zobacz rysunek).


PIC


Wtedy miara kąta ABC jest równa
A) 20∘ B) 2 5∘ C) 30∘ D) 35∘

Bok AB trójkąta ABC jest średnicą okręgu o środku S , a boki AC i BC przecinają ten okrąg odpowiednio w punktach D i E (zobacz rysunek). Ponadto |∡ABC | = 47∘ i |∡BAC | = 67∘ .


PIC


Zaznaczony na rysunku kąt α jest równy
A) 43∘ B) 2 4∘ C) 23∘ D) 20∘

Strona 5 z 7
spinner